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Abstract
This whitepaper introduces the SKY Network, a new blockchain and token as the incentive 

mechanism for a decentralized video streaming and delivery network.

The SKY Network and protocol solves various challenges the video streaming industry faces  

today. First, tokens on the SKY blockchain are used as an incentive to encourage individual  

users to share their redundant computing and bandwidth resources as caching or relay 

nodes for video streams. This improves the quality of stream delivery and solves the “ 

last-mile” delivery problem, the main bottleneck for traditional content delivery pipelines, 

especially for  high  resolution  high  bitrate  4k,  8k  and  next  generation  streams.  

Second,  with  sufficient network density the majority of viewers will pull streams from 

peering caching nodes, allowing video platforms to significantly reduce content delivery 

network (CDN) costs. More importantly,  by introducing tokens as an end-user incentive 

mechanism the SKY Network allows video  platforms to deepen viewer engagement, drive 

incremental revenues, and differentiate their  content and viewing experience from their 

competitors.

The SKY blockchain introduces three main novel concepts:

Multi-Level  BFT: A  modified  BFT consensus mechanism which allows thousands of 

nodes  to  participate  in  the  consensus   process,  while  still  supporting  very  high 

transaction throughput ( 1,000+ TPS). The core idea is to have a small set of nodes, 

which form the validator committee, produce a chain of blocks as fast as possible using  

a  PBFT-like  process.  Then,  the  thousands  of  consensus  participants,  called 

guardians,  finalize  the  chain  generated  by  the  validator  committee  at  regular 

checkpoint blocks. The name multi-level BFT consensus mechanism reflects the fact that 

the validator/guardian division provides multiple levels of security guarantee. The 

validator committee provides the first level of consensus — with 10 to 20 validators, the 

committee can come to consensus quickly. The guardian pool forms the second line of 

defense. With thousands of nodes, it is substantially more difficult for attackers to 

compromise the integrity of the network, and thus provides a much higher level of 

security.  We  believe  this  mechanism  achieves  a  good  balance  among  transaction 

throughput, consistency, and level of decentralization, the three pillars of the so-called 

“impossible triangle”
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transaction throughput ( 1,000+ TPS). The core idea is to have a small set of nodes, 

which form the validator committee, produce a chain of blocks as fast as possible using  

a  PBFT-like  process.  Then,  the  thousands  of  consensus  participants,  called 

guardians,  finalize  the  chain  generated  by  the  validator  committee  at  regular 

checkpoint blocks. The name multi-level BFT consensus mechanism reflects the fact that 

the validator/guardian division provides multiple levels of security guarantee. The 

validator committee provides the first level of consensus — with 10 to 20 validators, the 

committee can come to consensus quickly. The guardian pool forms the second line of 

defense. With thousands of nodes, it is substantially more difficult for attackers to 

compromise the integrity of the network, and thus provides a much higher level of 

security.  We  believe  this  mechanism  achieves  a  good  balance  among  transaction 

throughput, consistency, and level of decentralization, the three pillars of the so-called 

“impossible triangle”

Aggregated   Signature  Gossip   Scheme:   A   basic   all-to-all   broadcasting   of   the 

checkpoint  block  hash could work  between guardian  nodes,  but it yields quadratic 

communication overhead, and therefore cannot scale to 1,000+ nodes. Instead, we 

propose   an   Aggregated   Signature   Gossip   Scheme   which   significantly   reduces 

messaging complexity. Each guardian node keeps combining the partially aggregated 

signatures from all its neighbors, and then gossips out the aggregated signature. This 

way the signature share of each node can reach other nodes at an exponential rate,

 leveraging the gossip protocol. In addition, the signature aggregation keeps the size of 

the  node-to-node  messages  small,  and  thus  further  reduces  the  communication 

overhead.

 Resource    Oriented    Micropayment     Pool:    An    off-chain    “ Resource    Oriented 

Micropayment  Pool” that is purpose-built for video streaming.  It allows a user to create 

an off-chain micropayment pool that any other user can withdraw from using off-chain  

transactions,  and  is  double-spend   resistant.  It  is  much  more  flexible compared to 

off-chain payment channels.

This white paper will describe these concepts and the SKY blockchain in detail.  The SKY 

Network  launched  with  ERC20-compliant  tokens  and  were  integrated  into  the  

SLIVER.tv platform in December 2017.  The SKY blockchain mainnet code has been 

released, and the first live mainnet implementation is planned to launch on March 15, 2019, 

at which time each ERC20 SKY token will be exchanged 1�1 for native SKY tokens.
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Introduction
Video Streaming Market

Vision

Figure 1. Global IP video traffic growth

Live video streaming accounts for over two-thirds of all internet traffic today, and it is expected to 
jump to 82% by 2020, according to Cisco’s June 2016 Visual Networking Index report.1  In the US, 
millennials between the ages of 18 and 34 are driving the growth of video streaming, and are heavy 
users of services like Netflix, Youtube, and HBO. Streaming video among this group has jumped 
256% from an average of 1.6 hours per week to 5.7 hours per week according to a SSRS  Media  and  
Technology  survey,  and  mobile  devices  are  leading  the  charge in  video consumption growing 
44% in 2015 and 35% in 2016.2 The top five video streaming players in the US are Facebook, 
Google/Youtube, Twitter and related properties, Live.ly and Twitch.
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Video Streaming Challenges

Figure 2. Global virtual reality traffic growth3

At the same time, global virtual reality (VR) traffic including 360 ° video streaming content is 
estimated to grow 61-fold by 2020, at a staggering 127% CAGR according to the same Cisco report.

Content Delivery Networks (CDN) play an important role in the video streaming ecosystem. It 
provides the backbone infrastructure to deliver the video streams to end viewers. One major 
limitation of today’s CDN networks is the so-called “last-mile” delivery problem. Typically, CDN 
providers  build data centers called  Point-of-Presence  (POPs)  in  many locations around the world, 
with the expectation that these POPs are geographically close to the viewers. However, the  number  
of  POPs  are  limited,  hence  are  not  near  enough  to  the  majority  of  viewers, especially in less 
developed regions. This “ last-mile” link is usually the bottleneck of today’s streaming delivery 
pipeline and often leads to less optimal user experience including choppy streams, bad picture 
quality, and frequent rebuffering.

To streaming sites and content platforms, another major concern is the CDN bandwidth cost. For 
popular sites, the CDN bandwidth cost can easily reach tens of millions of dollars per year. Even if 
platforms own proprietary CDNs, maintenance costs are often high.

These  issues are  becoming even  more  prominent with the coming era of 4K, 8k, 360 ° VR 
streaming, and upcoming technologies such as  light field streaming. Table 1 compares the 
bandwidth requirements of today’s mainstream 720p/HD streams vs 4K, 360 ° VR and future 
lightfield streams, quickly jumping by orders of magnitude.
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Background

Table 1. Bandwidth comparison: today’s 720p/1080p video vs 4K and 360 ° VR streaming,
vs future volumetric/lightfield streaming

To solve the VR and  light field video delivery  problem, the industry has started to explore “foveated 
streaming” technology. Instead of streaming the entire video in full resolution, this technology 
reduces the image quality in the peripheral vision (outside of the zone gazed by the fovea) in order 
to reduce bandwidth requirements. As the viewer turns his or her head to look at a different 
direction, the system adapts the spatial video resolution accordingly by fetching the high  resolution  
video  packets  for  the  viewing  direction  from  the server.  For the foveated streaming technology 
to work well in practice, the round-trip time between the server and the viewer has to be small 
enough. For viewers that are geographically further from the CDN POPs, their VR stream viewing 
experience is compromised even with foveated streaming technology.

SLIVER.tv  (the  “company”)  has  been  at  the  forefront  of  developing  next-generation  video 
streaming technologies for VR and spherical 360 ° video streams since 2015, and is the parent 
company to SKY Labs, Inc.. SLIVER.tv has raised over $17 Million in venture financing from notable 
Silicon Valley VCs including Danhua Capital, DCM, Sierra ventures, leading Hollywood media  
investors  including Creative Artists Agency, BDMI, Advancit Capital, Greycroft Gaming Track Fund, 
and marquee corporate investors including GREE, Colopl, Samsung Next and Sony Innovation  
funds.  Additionally,  the  company   has  strong   Chinese  investors  and   partners including 
Heuristic Capital Partners, ZP Capital, Green Pine Capital Partners, and Sparkland.
In a technology derived from “foveated streaming” SLIVER.tv’s most recent technology patent 
granted   #9,998,664,   “ METHODS    AND    SYSTEMS   FOR    NON-CONCENTRIC   SPHERICAL 
PROJECTION   FOR   MULTI-RESOLUTION   VIEW”4,   specifically   addresses   the   problem   of 
generating  highly efficient spherical videos for virtual  reality (VR) streaming,  highlight, and replay. 
The technology performs non-concentric spherical projection to derive high resolution displays of 
selected important game actions concurrently with lower resolution displays of static game 
environments, thus optimizing tradeoff between visual fidelity and data transfer load.

Standard Resolution Bandwidth / Mbps Magnitude

720p HD

1080p HD

4K UHD

8K 360 ° VR

16K 360 ° VR

Lightfield

1080x720

1920x1080

3920x2160

7840x4320

15680x8640

---

5 to 7.5

8 to 12

32 to 48

128 to 192

512 to 768

5000+

1x

1.6x

6.4x

25x

100x

1000x
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SLIVER.tv today is the leading next-generation live esports streaming platform with over six million  
unique  visits  in  July   2018,  with  a  vision  to  transform  the  esports  engagement experience. As 
video gaming has grown in popularity to become a $40+ billion market, bigger than  Hollywood and  
Bollywood combined, the  rise of  multiplayer competitive gaming as a spectator  sport  has  
become  a  major  new  industry,  dubbed  esports.  Esports  is  a  global phenomenon with major 
tournaments and major pockets of fans and competitive teams in Europe, Asia and North America. 
The online gaming and esports ecosystems have exploded over the past five years.
A recent 2017 SuperData research5  put the combined audience for gaming video content on 
YouTube and Twitch at 665 million, more than twice the US population. This surpasses the viewership 
of 227  million for  HBO and  Netflix  combined. Today, esports and gaming video content account 
for a significant portion of all video content streamed over the Internet.
SLIVER.tv additional core patents and technology focus on various applications of cutting edge live  
streaming  to  esports  content.  The  company’s  US  Patent  #9,573,062  “ METHODS AND 
SYSTEMS FOR  VIRTUAL  REALITY STREAMING  AND  REPLAY  OF  COMPUTER  VIDEO  GAMES”6, 
US Patent  #9,473,758  “ METHODS  AND  SYSTEMS  FOR  GAME   VIDEO  RECORDING  AND   
VIRTUAL REALITY REPLAY”7  and US Patent #9,782,678 “ METHODS AND SYSTEMS FOR 
COMPUTER VIDEO GAME STREAMING, HIGHLIGHT, AND REPLAY”8  pioneer the capture and live 
rendering of popular PC esports games including League of Legends, Dota2 and Counter-Strike: 
Global Offensive in a fully immersive 360 ° VR spherical video stream, effectively placing the viewer 
and audience inside the 3D game through a live video stream, and rendering 360 ° highlights, 
replays and special effects in real-time.

Since  launching  in  2016,  SLIVER.tv  has broadcast numerous global esports tournaments in 360º 
VR in partnership with premier brands including ESL One, DreamHack and Intel Extreme Masters. At 
key events in the US and Europe, SLIVER.tv has live streamed top esports games to millions of fans 
of Counter-Strike: Global Offensive (CS:GO) and League of Legends (LoL).9

SLIVER.tv launched its Watch & Win esports platform in July 2017 and the first virtual token 
designed around esports content streaming and fan engagement. Since launch, the company has  
attracted  millions  of  esports  fans  circulating  over  1  Billion  virtual  tokens  by  actively 
participating and engaging with  live esports  matches. These  users viewed over 50  million minutes 
of live esports streaming, nearly 100 years worth of content in the first few weeks of launch. This 
positions the company as one of the largest esports streaming sites built around a virtual 
community today.10

The SLIVER.tv platform is continuing to expand quickly driven by word-of-mouth, referral and social 
channels.
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Figure 3. Total visits on desktop and mobile web, in the last 6 months

Opportunity
The company’s mission is to leverage blockchain technology to create the first Decentralized Video  
Streaming  and  Delivery  Network  whereby  video  viewers  are  incentivized  to  share redundant 
computing and bandwidth resources to address today’s video streaming challenges. Using the 
Ethereum EVM “World Computer” metaphor, the SKY Network can be viewed as the “World Cache” 
formed by the memory and bandwidth resources contributed by viewers.

Specifically, viewers around the globe can contribute their devices as “caching nodes” whereby they 
form a video delivery mesh network that is responsible for delivering any given video stream to 
viewers anywhere around the world optimized for local. The SKY Network can effectively address 
the technical challenges discussed in the previous section. First, viewers’ devices are geographically  
much closer to each other than to the CDN POPs. This reduces packet  round-trip  time  and  
improves  the  stream delivery quality, and thus addresses the “ last-mile” delivery issue. Second, 
with a sufficient amount of caching nodes, most viewers will receive  the  stream from caching  
nodes, which will  help streaming sites  reduce their CDN bandwidth cost. Third, caching nodes also 
reduce round-trip time making foveated and next generation streaming technology practical.

To encourage viewers to contribute their computing and bandwidth resources, we introduce the SKY 
token as an incentive mechanism. Caching nodes can earn tokens as they relay video streams to 
other viewers. Not only does the SKY Token motivate viewers to join the network as caching nodes, 
it also greatly improves the streaming market efficiency by streamlining the video delivery process. 
We will discuss later in the paper, but within the SKY Network, advertisers can also directly target 
viewers at a lower cost, viewers earn SKY Tokens for their attention and engagement with their 
favorite content, and influencers earn SKY Token as gifts directly from  viewers.  More  interestingly,  
streaming  and  content  platforms  can  open  up  new and incremental revenue opportunities with 
SKY.
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The full launch of the SKY protocol introduces a new blockchain and a native token 
structure where:

The SKY protocol builds upon the following novel concepts:

●Caching nodes earn tokens for caching and relaying video streams to other viewers
●Viewers optionally earn tokens from advertisers as engagement rewards, and can in turn gift to 

favorite influencers and content creators
●Streaming sites and  platforms can drive  incremental new revenues through sales of premium 

goods and services, and deepen user engagement through SKY
●Advertisers fund advertising campaigns with tokens to support influencers, streaming sites and 

viewers
●Streaming sites and platforms can offload up to 80% of CDN costs

 Multi-Level  BFT: A  modified  BFT consensus mechanism which allows thousands of nodes  to  
participate  in  the  consensus   process,  while  still  supporting  very  high transaction 
throughput ( 1,000+ TPS). The core idea is to have a small set of nodes, which forms the validator 
committee, to produce a chain of blocks as fast as possible using a PBFT-like process. Then, the 
thousands of consensus participants, called the guardians,  can  finalize  the  chain  generated  
by  the validator committee at  regular checkpoint blocks. The name multi-level BFT consensus 
mechanism reflects the fact that the validator/guardian division provides multiple levels of 
security guarantee. The validator committee provides the first level of protection — with 10 to 20 
validators, the committee can come to consensus quickly. The guardian pool forms the second 
line of defense. With thousands of nodes, it is substantially more difficult for attackers to 
compromise, and thus  provides a  much higher level of security. We believe this mechanism 
achieves a good balance among transaction throughput, consistency, and level of 
decentralization, the three pillars of the so-called “impossible triangle”

Aggregated   Signature  Gossip   Scheme:   A   naive   all-to-all   broadcasting  of  the checkpoint  
block  hash could work  between guardian  nodes,  but it yields quadratic communication 
overhead, and so cannot scale to 1,000+ nodes. Instead we propose an Aggregated Signature 
Gossip Scheme which could significantly reduce messaging complexity. Each guardian node 
keeps combining the partially aggregated signatures from all its neighbors, and then gossips out 
the aggregated signature. This way the signature share of each node can reach other nodes at 
exponential speed thanks to the  gossip  protocol.  In  addition,  the  signature  aggregation  
keeps  the  size  of  the node-to-node   messages   small,   and   thus  further   reduces   the   
communication overhead.

   Resource    Oriented    Micropayment     Pool:    An    off-chain    “ Resource    Oriented 
Micropayment  Pool” that is purpose-built for video streaming.  It allows a user to create an 
off-chain micropayment pool that any other user can withdraw from using off-chain  
transactions,  and  is  double-spend   resistant.  It  is  much  more  flexible compared to off-chain 
payment channels. In particular, for the video streaming use case, it allows a viewer to pay for 
video content pulled from multiple caching nodes without  on-chain  transactions.  By  replacing  
on-chain  transactions  with  off-chain payments, the built-in “ Resource Oriented Micropayment 
Pool” significantly improves the scalability of the blockchain.
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SKY Mesh
Delivery Network

Peer-to-peer streaming focuses on timely delivery of audio and video content under strict, near 
real-time parameters. Peer-to-peer livestream delivery works best when many people tune in for the 
same stream at the same time.   High concurrent user count means more peering resources are 
available, and thus the peer nodes can pull the stream from each other more effectively. The whole 
system capacity increases as more peer nodes become available. Moreover, robustness of the 
system is increased in a peer-to-peer network, as nodes do not need to rely on a centralized server 
to retrieve content. This is especially important in cases of server failure. In contrast, for centralized 
CDN-based delivery, high concurrent users instead place scalability pressures on the CDN servers.

However, the shortcoming of pure peer-to-peer streaming is availability. Peers come and go at 
anytime, which makes it difficult to predict the availability of any given peer node. There are also 
uncontrollable differences of nodes, such as upload and download capacities. On the other hand, a 
CDN service is more reliable and robust, and hence it can serve as a reliable “backup” when the 
stream is not available from peer nodes.
Our   goal   is   to   achieve   maximum   CDN   bandwidth   reduction   without   sacrificing   the 
quality-of-service (QoS) which is critical to established streaming platforms such as Netflix, YouTube, 
Twitch, Facebook and others. This means whenever possible we want the peer nodes to pull the 
stream from each other instead of from the CDN. To achieve this goal, it’s crucial for the peer nodes 
to be able to identify neighboring nodes effectively. If a node can identify multiple peers in close 
proximity, chances are that it can find peers that can provide the video stream segments much more 
consistently. On the contrary, if the identified peers are “further away”  in  terms  of   network  hops,  
nodes  might  not  be  able  to  pull  stream  from  peers consistently and cause degraded user 
experience like stuttering, frequent rebuffering, etc.

To address this problem, SKY has designed and is currently implementing a strategy which combines 
both a hyper-optimized tracker server and player client-side intelligence. Essentially, the tracker 

server provides high level guidance (e.g. a list of candidate peers) for the player client, while the 
player client implements a peer filtering algorithm at a finer granularity based on multiple variables 
to find the neighboring nodes that can best serve them.

Interestingly,  the   immutability   characteristic   also  enhances  the  tolerance  to  network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus 
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on 
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint 
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To  provide  byzantine  fault  tolerance,  an  honest  node  needs  to  be  assured  that  at  least 
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive
 

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark 
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the 
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to 
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the 
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This 
requires each node to send, receive and process O(n) messages, where each message can be a 
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple 
hundred guardian nodes, unless we select a large T  value, which is undesirable since it increases the 
block finalization latency.
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Geo-Optimized Tracker Server

server provides high level guidance (e.g. a list of candidate peers) for the player client, while the 
player client implements a peer filtering algorithm at a finer granularity based on multiple variables 
to find the neighboring nodes that can best serve them.

In order to provide a list of candidate peer nodes to each client, the tracker server records the 
location   information   whenever   a    peer  joins   the   network,   including   its   IP   address, 
latitude/longitude, and a number of other performance parameters.  With this information the server  
can  organize  the   nodes   in  a  spatial  database.  SKY’s  “hyper-optimized”  spatial database  is  
optimized  for  storing  and  querying  data  that  represents  objects  defined  in geometric space. 
As a peer node joins the network, the server can perform a spatial query to retrieve a list of candi-
date peers that are in the close proximity very quickly and efficiently, see Figure 4. The tracker 
servers and the spatial databases can be maintained by video streaming sites that use the SKY 
network and/or by community peers for content delivery.

As we mentioned earlier, a peer node might leave the network at anytime. Hence the tracker server 
also needs to be aware of which nodes are active. To achieve this, an active peer node needs  to  
maintain  a  socket  connection  with  the  server  and  send  heartbeat  signals consistently. If the 
server doesn’t receive a heartbeat for a certain amount of time, it considers that peer node as 
having left the network, and updates the spatial database accordingly.

An important distinction is that the “distance” between two peer nodes is measured by the number 
of router hops between them rather than the geographical distance. Typically network distance and 
geographical distance are highly correlated, but aren’t necessarily equivalent. For example, two 
computers could sit next to each other physically, but connect to different ISPs so there might be 
many hops between them.  Hence, aside from geographical information, the tracker server also 
utilizes the connectivity between the IP addresses collected in the past to analyze and select neigh-

Figure 4. Interactions between the tracker servers and player clients

bor candidates. For example, candidates returned by the spatial query can go through another filter 
to exclude those that are not connected to the same ISP as the viewer’s.

Interestingly,  the   immutability   characteristic   also  enhances  the  tolerance  to  network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus 
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on 
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint 
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To  provide  byzantine  fault  tolerance,  an  honest  node  needs  to  be  assured  that  at  least 
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive
 

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark 
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the 
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to 
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the 
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This 
requires each node to send, receive and process O(n) messages, where each message can be a 
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple 
hundred guardian nodes, unless we select a large T  value, which is undesirable since it increases the 
block finalization latency.
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Intelligent Player Client
Each  peer  node may act both as a viewer, a caching node or both.   As the node launches, during 
the handshake step, it retrieves a list of candidate peers from the tracker server for the livestream 
it’s playing.  Then, it performs a speed and availability test to select a subset that has optimized 
performance, connectivity and can reliably provide the video stream segments. The client performs 
the speed and availability tests regularly during a live stream session and continuously refines its 
neighbor list.

To avoid QoS degradation, local buffer management is critical.  The client player maintains a local 
cache to buffer the downloaded stream data as in Figure 5.  If the duration of the cached stream 
data is less than a certain threshold, the player checks with the neighboring peers to see if they 
have the desired video stream segment. In the event when none of the neighbors has that segment, 
the player intelligently falls back to the CDN.  To achieve the best QoS possible, the player fetches an 
updated candidate list from the tracker server on a regular basis during the stream session.

The first version of the client video player is a web/HTML5 based player which employs the WebRTC 
protocol for stream delivery among peers.  Deploying web-based players requires minimal effort.  
Streaming sites and platforms simply embed the player onto their webpages, and it instantly has 
access and “launches” millions of end user nodes in the SKY mesh network. Thus, the deployment of 
SKY’s mesh streaming technology is very light-weight and frictionless.

SKY also plans to release desktop and mobile client support.  The advantage of a desktop client app 
over the web/HTML5 player is that it can run in the background to facilitate video stream relay (with 
the consent of the user) even when the end user is not watching any video streams. Further, SKY is 
investigating dedicated hardware, IOT devices, SmartTVs and related approaches that are specifical-
ly designed for stream relay and re-broadcast.  Such devices can provide potentially better availabil-
ity and bandwidth.

bor candidates. For example, candidates returned by the spatial query can go through another filter 
to exclude those that are not connected to the same ISP as the viewer’s.

Figure 5. Player stream data buffer handling

Interestingly,  the   immutability   characteristic   also  enhances  the  tolerance  to  network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus 
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on 
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint 
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To  provide  byzantine  fault  tolerance,  an  honest  node  needs  to  be  assured  that  at  least 
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive
 

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark 
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the 
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to 
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the 
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This 
requires each node to send, receive and process O(n) messages, where each message can be a 
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple 
hundred guardian nodes, unless we select a large T  value, which is undesirable since it increases the 
block finalization latency.
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Blockchain Ledger

The  SKY  Ledger  is  a  decentralized  ledger  designed  for  the  video  streaming  industry.  It 
powers  the  SKY  token  ecosystem which incentives end users to share their redundant bandwidth  
and storage  resources, and enables them to engage  more actively with video platforms and con-
tent creators. To realize these goals, a number of challenges, many of which are unique for video 
streaming applications, need to be tackled.

One  of  such  challenges  is  to  support  ultra  high  transaction throughput. Although  many block-
chain  projects  are  facing  transaction  throughput  problems,  scaling  for  live  video streaming is 
different and possibly even more complex. Typically, video segments are a couple of seconds long. To 
achieve the finest granularity of a token reward — one micropayment per video segment — even a 
live stream with a moderate ten thousand concurrent viewers could generate a couple of thousand 
microtransactions per second, which far exceeds the maximum throughput of today’s public chains, 
such as Bitcoin and Ethereum. Popular live streams like major esport tournaments can attract more 
than one million viewers watching one stream simultaneously, not to mention multiple concurrent 
live streams, which could potentially push the required transaction throughput to the range of 
millions per second.

A  byproduct of the  high throughput  is rapidly growing storage consumption. Storing the micro-
payment  transactions   is   highly  storage  demanding.  With  tens  of  thousands  of transactions 
added to the ledger every second, the storage space of an ordinary computer could run out quickly.

Video streaming applications typically require fast consensus. For bandwidth sharing rewards, the 
users that contribute redundant bandwidth typically want the payment to be confirmed before 
sending the next one. Other use cases, such as virtual gift donations to live stream hosts, also 
require short confirmation times to enable to real-time interactions between the hosts and audi-
ence.

Finally, as in any blockchain, security of the ledger is critical. Security is highly correlated with the  
level  of  decentralization.  In  a   Proof-of-Stake  (PoS)  based  consensus  mechanism, decentraliza-
tion means an even stake distribution among consensus participants. Ideally, the consensus  mecha-
nism  should  allow  thousands  of  independent  nodes,  each  with  similar amounts of stake and 
each possessing a local copy of the blockchain, to participate in the block finalization process. To 
compromise such a system, a significant amount of independent nodes would need to be controlled 
by the attackers, which is difficult to achieve.

To  achieve  these   goals,  we  have  designed  our  PoS  consensus  algorithm  based  on  the Byz-
antine Fault Tolerance (BFT) protocols, which offers good guarantees such as consistency (a.k.a. 
safety) when more than 2/3 of nodes running the ledger software are honest. However, the tradi-
tional BFT algorithms do not allow a high level of decentralization. They typically incur O(n2) mes-
saging complexity even for the normal (non-faulty proposer) case, where n is the number of nodes 
participating in the consensus protocol. When we have thousands of nodes, it will take considerable 
amount of time to reach agreement. In this paper, we present a novel multi-level  BFT  consensus  
mechanism  that  allows  mass  participation,  and  still  achieves 1000+ TPS throughput with the 
transaction confirmation time as short as a few seconds.

Such  level  of  transaction  throughput,  although  already   much  higher  than   Bitcoin  and  Ethe-
reum,  is  still  not  sufficient  to  handle  the  micropayments  for  the  “pay-per-byte”
 

granularity. To further increase the throughput, the SKY Ledger provides native support for off-chain 
scaling, with a “resource oriented micropayment pool” which further amplifies the supportable 
throughput by several order of magnitudes.

We  note  that  the  off-chain  payment  support  not  only  boosts  the  throughput,  but  also 
decreases the number of the transactions that need to be stored in the blockchain. On top of that, 
we introduce the technique of state and block history pruning to further reduce the storage space 
requirement. Moreover, we have adopted the microservice architecture for the storage system, which 
can adapt to different types of machines and storage backends, be it powerful server clusters run-
ning in data centers, or commodity desktop PCs.

Interestingly,  the   immutability   characteristic   also  enhances  the  tolerance  to  network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus 
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on 
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint 
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To  provide  byzantine  fault  tolerance,  an  honest  node  needs  to  be  assured  that  at  least 
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive
 

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark 
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the 
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to 
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the 
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This 
requires each node to send, receive and process O(n) messages, where each message can be a 
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple 
hundred guardian nodes, unless we select a large T  value, which is undesirable since it increases the 
block finalization latency.
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than one million viewers watching one stream simultaneously, not to mention multiple concurrent 
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Finally, as in any blockchain, security of the ledger is critical. Security is highly correlated with the  
level  of  decentralization.  In  a   Proof-of-Stake  (PoS)  based  consensus  mechanism, decentraliza-
tion means an even stake distribution among consensus participants. Ideally, the consensus  mecha-
nism  should  allow  thousands  of  independent  nodes,  each  with  similar amounts of stake and 
each possessing a local copy of the blockchain, to participate in the block finalization process. To 
compromise such a system, a significant amount of independent nodes would need to be controlled 
by the attackers, which is difficult to achieve.

To  achieve  these   goals,  we  have  designed  our  PoS  consensus  algorithm  based  on  the Byz-
antine Fault Tolerance (BFT) protocols, which offers good guarantees such as consistency (a.k.a. 
safety) when more than 2/3 of nodes running the ledger software are honest. However, the tradi-
tional BFT algorithms do not allow a high level of decentralization. They typically incur O(n2) mes-
saging complexity even for the normal (non-faulty proposer) case, where n is the number of nodes 
participating in the consensus protocol. When we have thousands of nodes, it will take considerable 
amount of time to reach agreement. In this paper, we present a novel multi-level  BFT  consensus  
mechanism  that  allows  mass  participation,  and  still  achieves 1000+ TPS throughput with the 
transaction confirmation time as short as a few seconds.

Such  level  of  transaction  throughput,  although  already   much  higher  than   Bitcoin  and  Ethe-
reum,  is  still  not  sufficient  to  handle  the  micropayments  for  the  “pay-per-byte”
 

granularity. To further increase the throughput, the SKY Ledger provides native support for off-chain 
scaling, with a “resource oriented micropayment pool” which further amplifies the supportable 
throughput by several order of magnitudes.

We  note  that  the  off-chain  payment  support  not  only  boosts  the  throughput,  but  also 
decreases the number of the transactions that need to be stored in the blockchain. On top of that, 
we introduce the technique of state and block history pruning to further reduce the storage space 
requirement. Moreover, we have adopted the microservice architecture for the storage system, which 
can adapt to different types of machines and storage backends, be it powerful server clusters run-
ning in data centers, or commodity desktop PCs.

The SKY Ledger is built on a  novel multi-level BFT consensus mechanism11  which allows thou-
sands of nodes to participate in the consensus process, while still supporting very high transaction 
throughput ( 1000+ TPS).

The core idea is to have a small set of nodes, which forms the validator committee, produce a chain 
of blocks as fast as possible using a PBFT-like12  process. With a sufficient number of validators (e.g. 

The Consensus Mechanism
Multi-Level BFT

10 to 20), the validator committee can produce blocks at a fast speed, and still retain a high degree 
of difficulty to prevent an adversary from compromising the integrity of the blockchain.  Hence,  it  is 
reasonable to expect that there is a very high probability the validators will produce a chain of 
blocks without forks. Then, the thousands of consensus participants, called guardians, can finalize 
the chain generated by the validator committee. Here “finalization” means to convince each honest 
guardian that more than 2/3 of all the other guardians see the same chain of blocks.

Since there are many more guardians than validators, it could a take longer time for the guardians to 
reach consensus than the validator committee.  In order for the guardians to finalize the chain of 
blocks at the same speed that the validator committee produces new blocks, the guardian nodes 
can process the blocks at a much coarser grain. To be more specific, they only need to agree on the 
hash of the checkpoint blocks, i.e. blocks whose height are a multiple of some integer r (e.g. r =  
100). This “leapfrogging” finalization strategy leverages the immutability characteristic of the block-
chain data structure — as long as two guardian nodes agree on the hash of a block, with over-
whelming probability, they will have exactly the same copy of the entire blockchain up to that block. 
Finalizing only the checkpoint blocks gives sufficient time for the thousands of guardians to reach 
consensus. Hence, with this strategy, the two independent processes, i.e., block production and 
finalization, can advance at the same pace.

Under the normal condition, finalizing a checkpoint block is similar to the "commit" step of the 
celebrated PBFT algorithm since each guardian has already stored the checkpoint block locally. 
Moreover, the checkpoint block has been signed by the validator committee, and hence it is highly 
likely that all the honest guardians have the same checkpoint. Thus, we only need a protocol for the 
honest guardians to confirm that indeed more than 2/3 of all guardians have the same checkpoint 
hash.

To implement this protocol, a naive all-to-all broadcasting of the checkpoint block hash could work, 
but it yields quadratic communication overhead, and so cannot scale to large numbers of guardians.  
Instead  we  propose  an  aggregated  signature  gossip  scheme  which   could significantly reduce 
messaging complexity. The core idea is rather simple. Each guardian node keeps combining the 
partially aggregated signatures from all its neighbors, and then gossips out the aggregated signa-
ture, along with a compact bitmap which encodes the list of signers. This way the signature share of 
each node can reach other nodes at exponential speed utilizing the gossip protocol. Within O(log n) 
iterations, with high probability, all the honest guardian nodes should have a string which aggre-
gates the signatures from all other honest nodes if there is no network partition.  In addition, the 
signature aggregation keeps the size of the node-to-node messages small, and thus further reduces 
the communication overhead.

As mentioned above, the validator committee is comprised of a limited set of validator nodes, typi-
cally in the range of ten to twenty. They can be selected through an election process, or a random-
ized process, and may be subject to rotation to improve security. To be eligible to join the validator 
committee, a node needs to lock up a certain amount of stake for a period of time, which can be 
slashed if malicious behavior is detected. The blocks that the committee reaches consensus on are 

called settled blocks, and the process to settle the blocks is called the block settlement process.

The guardian pool is a superset of the validator committee, i.e. a validator is also a guardian. The 
pool contains a  large  number of nodes, which could be in the range of thousands. With a certain 
amount of tokens locked up for a period of time, any node in the network can instantly become a 
guardian. The guardians download and examine the chain of blocks generated by the validator  
committee  and  try  to  reach  consensus  on  the  the  checkpoints  with the above described 
“leapfrogging” approach. By allowing mass participation, we can greatly enhance the transaction 
security. The blocks that the guardian pool has reached consensus on are called finalized blocks, and 
the process to finalize the blocks is called the block finalization process.

The name multi-level BFT consensus mechanism reflects the fact that the validator/guardian division 
provides multiple levels of security guarantee. The validator committee provides the first level of 
protection — with 10 to 20 validators, the committee can come to consensus quickly. Yet it is resis-
tant enough to attacks — in fact, it already provides a similar level of security compared to the DPoS 
mechanism if each validator nodes is run by an independent entity. Thus, a transaction can already 
be considered safe when it has been included in a settled block, especially for low stake transac-
tions. The guardian pool forms the second line of defense.  With  thousands  of  nodes,  it  is  sub-
stantially  more  difficult  for  attackers  to compromise blockchain integrity, and thus provides a 
much higher level of security. In the unlikely event that the validator committee is fully controlled by 
attackers, the guardians can re-elect the validators, and the blockchain can restart, advancing from 
the most recent block finalized by the guardians. A transaction is considered irreversible when it is 
included in a finalized  block.  We  believe  this  mechanism  achieves  a  good  balance  among  
transaction throughput,  consistency,  and  level  of  decentralization,  the  three  corners  of the 
so-called “impossible triangle”
The  multi-level  security  scheme  suits  video  streaming  applications  well.  For  streaming plat-
forms, most of the transactions are micropayments (e.g. payment for peer bandwidth, virtual gifts to 
hosts, etc.) which typically have low value, but require fast confirmation. For such low stake pay-
ments, the users only need to wait for block settlement, which is very fast, in a matter of seconds.  
For high stake transfers, the user can wait longer until the block
 
containing the transaction is finalized, which could take slightly longer time, but is still in the range 
of minutes.

Interestingly,  the   immutability   characteristic   also  enhances  the  tolerance  to  network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus 
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on 
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint 
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To  provide  byzantine  fault  tolerance,  an  honest  node  needs  to  be  assured  that  at  least 
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive
 

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark 
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the 
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to 
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the 
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This 
requires each node to send, receive and process O(n) messages, where each message can be a 
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple 
hundred guardian nodes, unless we select a large T  value, which is undesirable since it increases the 
block finalization latency.
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The SKY Ledger is built on a  novel multi-level BFT consensus mechanism11  which allows thou-
sands of nodes to participate in the consensus process, while still supporting very high transaction 
throughput ( 1000+ TPS).

The core idea is to have a small set of nodes, which forms the validator committee, produce a chain 
of blocks as fast as possible using a PBFT-like12  process. With a sufficient number of validators (e.g. 
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guardian that more than 2/3 of all the other guardians see the same chain of blocks.
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blocks at the same speed that the validator committee produces new blocks, the guardian nodes 
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chain data structure — as long as two guardian nodes agree on the hash of a block, with over-
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Under the normal condition, finalizing a checkpoint block is similar to the "commit" step of the 
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Moreover, the checkpoint block has been signed by the validator committee, and hence it is highly 
likely that all the honest guardians have the same checkpoint. Thus, we only need a protocol for the 
honest guardians to confirm that indeed more than 2/3 of all guardians have the same checkpoint 
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To implement this protocol, a naive all-to-all broadcasting of the checkpoint block hash could work, 
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Instead  we  propose  an  aggregated  signature  gossip  scheme  which   could significantly reduce 
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cally in the range of ten to twenty. They can be selected through an election process, or a random-
ized process, and may be subject to rotation to improve security. To be eligible to join the validator 
committee, a node needs to lock up a certain amount of stake for a period of time, which can be 
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amount of tokens locked up for a period of time, any node in the network can instantly become a 
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The name multi-level BFT consensus mechanism reflects the fact that the validator/guardian division 
provides multiple levels of security guarantee. The validator committee provides the first level of 
protection — with 10 to 20 validators, the committee can come to consensus quickly. Yet it is resis-
tant enough to attacks — in fact, it already provides a similar level of security compared to the DPoS 
mechanism if each validator nodes is run by an independent entity. Thus, a transaction can already 
be considered safe when it has been included in a settled block, especially for low stake transac-
tions. The guardian pool forms the second line of defense.  With  thousands  of  nodes,  it  is  sub-
stantially  more  difficult  for  attackers  to compromise blockchain integrity, and thus provides a 
much higher level of security. In the unlikely event that the validator committee is fully controlled by 
attackers, the guardians can re-elect the validators, and the blockchain can restart, advancing from 
the most recent block finalized by the guardians. A transaction is considered irreversible when it is 
included in a finalized  block.  We  believe  this  mechanism  achieves  a  good  balance  among  
transaction throughput,  consistency,  and  level  of  decentralization,  the  three  corners  of the 
so-called “impossible triangle”
The  multi-level  security  scheme  suits  video  streaming  applications  well.  For  streaming plat-
forms, most of the transactions are micropayments (e.g. payment for peer bandwidth, virtual gifts to 
hosts, etc.) which typically have low value, but require fast confirmation. For such low stake pay-
ments, the users only need to wait for block settlement, which is very fast, in a matter of seconds.  
For high stake transfers, the user can wait longer until the block
 
containing the transaction is finalized, which could take slightly longer time, but is still in the range 
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on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on 
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint 
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To  provide  byzantine  fault  tolerance,  an  honest  node  needs  to  be  assured  that  at  least 
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive
 

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark 
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the 
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to 
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the 
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This 
requires each node to send, receive and process O(n) messages, where each message can be a 
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple 
hundred guardian nodes, unless we select a large T  value, which is undesirable since it increases the 
block finalization latency.
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The SKY Ledger is built on a  novel multi-level BFT consensus mechanism11  which allows thou-
sands of nodes to participate in the consensus process, while still supporting very high transaction 
throughput ( 1000+ TPS).

The core idea is to have a small set of nodes, which forms the validator committee, produce a chain 
of blocks as fast as possible using a PBFT-like12  process. With a sufficient number of validators (e.g. 

System Model

10 to 20), the validator committee can produce blocks at a fast speed, and still retain a high degree 
of difficulty to prevent an adversary from compromising the integrity of the blockchain.  Hence,  it  is 
reasonable to expect that there is a very high probability the validators will produce a chain of 
blocks without forks. Then, the thousands of consensus participants, called guardians, can finalize 
the chain generated by the validator committee. Here “finalization” means to convince each honest 
guardian that more than 2/3 of all the other guardians see the same chain of blocks.

Since there are many more guardians than validators, it could a take longer time for the guardians to 
reach consensus than the validator committee.  In order for the guardians to finalize the chain of 
blocks at the same speed that the validator committee produces new blocks, the guardian nodes 
can process the blocks at a much coarser grain. To be more specific, they only need to agree on the 
hash of the checkpoint blocks, i.e. blocks whose height are a multiple of some integer r (e.g. r =  
100). This “leapfrogging” finalization strategy leverages the immutability characteristic of the block-
chain data structure — as long as two guardian nodes agree on the hash of a block, with over-
whelming probability, they will have exactly the same copy of the entire blockchain up to that block. 
Finalizing only the checkpoint blocks gives sufficient time for the thousands of guardians to reach 
consensus. Hence, with this strategy, the two independent processes, i.e., block production and 
finalization, can advance at the same pace.

Under the normal condition, finalizing a checkpoint block is similar to the "commit" step of the 
celebrated PBFT algorithm since each guardian has already stored the checkpoint block locally. 
Moreover, the checkpoint block has been signed by the validator committee, and hence it is highly 
likely that all the honest guardians have the same checkpoint. Thus, we only need a protocol for the 
honest guardians to confirm that indeed more than 2/3 of all guardians have the same checkpoint 
hash.

To implement this protocol, a naive all-to-all broadcasting of the checkpoint block hash could work, 
but it yields quadratic communication overhead, and so cannot scale to large numbers of guardians.  
Instead  we  propose  an  aggregated  signature  gossip  scheme  which   could significantly reduce 
messaging complexity. The core idea is rather simple. Each guardian node keeps combining the 
partially aggregated signatures from all its neighbors, and then gossips out the aggregated signa-
ture, along with a compact bitmap which encodes the list of signers. This way the signature share of 
each node can reach other nodes at exponential speed utilizing the gossip protocol. Within O(log n) 
iterations, with high probability, all the honest guardian nodes should have a string which aggre-
gates the signatures from all other honest nodes if there is no network partition.  In addition, the 
signature aggregation keeps the size of the node-to-node messages small, and thus further reduces 
the communication overhead.

As mentioned above, the validator committee is comprised of a limited set of validator nodes, typi-
cally in the range of ten to twenty. They can be selected through an election process, or a random-
ized process, and may be subject to rotation to improve security. To be eligible to join the validator 
committee, a node needs to lock up a certain amount of stake for a period of time, which can be 
slashed if malicious behavior is detected. The blocks that the committee reaches consensus on are 

called settled blocks, and the process to settle the blocks is called the block settlement process.

The guardian pool is a superset of the validator committee, i.e. a validator is also a guardian. The 
pool contains a  large  number of nodes, which could be in the range of thousands. With a certain 
amount of tokens locked up for a period of time, any node in the network can instantly become a 
guardian. The guardians download and examine the chain of blocks generated by the validator  
committee  and  try  to  reach  consensus  on  the  the  checkpoints  with the above described 
“leapfrogging” approach. By allowing mass participation, we can greatly enhance the transaction 
security. The blocks that the guardian pool has reached consensus on are called finalized blocks, and 
the process to finalize the blocks is called the block finalization process.

The name multi-level BFT consensus mechanism reflects the fact that the validator/guardian division 
provides multiple levels of security guarantee. The validator committee provides the first level of 
protection — with 10 to 20 validators, the committee can come to consensus quickly. Yet it is resis-
tant enough to attacks — in fact, it already provides a similar level of security compared to the DPoS 
mechanism if each validator nodes is run by an independent entity. Thus, a transaction can already 
be considered safe when it has been included in a settled block, especially for low stake transac-
tions. The guardian pool forms the second line of defense.  With  thousands  of  nodes,  it  is  sub-
stantially  more  difficult  for  attackers  to compromise blockchain integrity, and thus provides a 
much higher level of security. In the unlikely event that the validator committee is fully controlled by 
attackers, the guardians can re-elect the validators, and the blockchain can restart, advancing from 
the most recent block finalized by the guardians. A transaction is considered irreversible when it is 
included in a finalized  block.  We  believe  this  mechanism  achieves  a  good  balance  among  
transaction throughput,  consistency,  and  level  of  decentralization,  the  three  corners  of the 
so-called “impossible triangle”
The  multi-level  security  scheme  suits  video  streaming  applications  well.  For  streaming plat-
forms, most of the transactions are micropayments (e.g. payment for peer bandwidth, virtual gifts to 
hosts, etc.) which typically have low value, but require fast confirmation. For such low stake pay-
ments, the users only need to wait for block settlement, which is very fast, in a matter of seconds.  
For high stake transfers, the user can wait longer until the block
 
containing the transaction is finalized, which could take slightly longer time, but is still in the range 
of minutes.

Before diving into the details of the block settlement and finalization process, we first list our 
assumptions of the system.  For ease of discussion, without loss of generality, below we assume 
each node (be it a validator or a guardian) has the same amount of stake. Extending the algorithms 
to the general case where different nodes have different amount of stake is straightforward.

Validator committee failure model: There are m validator nodes in total. Most of the time, at most 

one-third of them are byzantine nodes. They might be fully controlled by attackers, but this happens 
only rarely. We also assume that between any pair of validator nodes there is a direct message 
channel (e.g. a direct TCP connection).

Guardian pool failure model: There are n guardian nodes in total. At any moment, at most one-third 
of them are byzantine nodes. We do not assume a direct message channel between any two guard-
ians. Messages between them might need to be routed through other nodes, some of which could 
be byzantine nodes.

Timing model: We assume the “weak synchrony” model. To be more specific, the network can be 
asynchronous, or even partitioned for a bounded period of time. Between the asynchronous periods 
there are sufficiently long periods of time where all message transmissions between two honest 
nodes arrive within a known time bound  △ . As we will discuss later in the paper, during the asyn-
chronous period, the ledger simply stops producing new blocks. It will never produce conflicting 
blocks even with network partition.  During synchronous phases, block production will naturally 
resume, and eventual liveness can be achieved.

Attacker model: We assume powerful attackers. They can corrupt a large number of targeted nodes, 
but no more than one-third of all the guardians simultaneously. They can manipulate the network at 
a large scale, and can even partition the network for a bounded period of time. Yet they are compu-
tationally bounded. They cannot forge fake signatures, and cannot invert cryptographic hashes.

Interestingly,  the   immutability   characteristic   also  enhances  the  tolerance  to  network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus 
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on 
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint 
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To  provide  byzantine  fault  tolerance,  an  honest  node  needs  to  be  assured  that  at  least 
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive
 

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark 
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the 
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to 
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the 
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This 
requires each node to send, receive and process O(n) messages, where each message can be a 
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple 
hundred guardian nodes, unless we select a large T  value, which is undesirable since it increases the 
block finalization latency.
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Before diving into the details of the block settlement and finalization process, we first list our 
assumptions of the system.  For ease of discussion, without loss of generality, below we assume 
each node (be it a validator or a guardian) has the same amount of stake. Extending the algorithms 
to the general case where different nodes have different amount of stake is straightforward.

Validator committee failure model: There are m validator nodes in total. Most of the time, at most 

one-third of them are byzantine nodes. They might be fully controlled by attackers, but this happens 
only rarely. We also assume that between any pair of validator nodes there is a direct message 
channel (e.g. a direct TCP connection).

Guardian pool failure model: There are n guardian nodes in total. At any moment, at most one-third 
of them are byzantine nodes. We do not assume a direct message channel between any two guard-
ians. Messages between them might need to be routed through other nodes, some of which could 
be byzantine nodes.

Timing model: We assume the “weak synchrony” model. To be more specific, the network can be 
asynchronous, or even partitioned for a bounded period of time. Between the asynchronous periods 
there are sufficiently long periods of time where all message transmissions between two honest 
nodes arrive within a known time bound  △ . As we will discuss later in the paper, during the asyn-
chronous period, the ledger simply stops producing new blocks. It will never produce conflicting 
blocks even with network partition.  During synchronous phases, block production will naturally 
resume, and eventual liveness can be achieved.

Attacker model: We assume powerful attackers. They can corrupt a large number of targeted nodes, 
but no more than one-third of all the guardians simultaneously. They can manipulate the network at 
a large scale, and can even partition the network for a bounded period of time. Yet they are compu-
tationally bounded. They cannot forge fake signatures, and cannot invert cryptographic hashes.
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chain of blocks for the guardian pool to finalize. Inspired by recent Proof-of-Stake research works 
including Tendermint13, Casper FFG14, and Hot-Stuff15, we have designed and implemented the 
block settlement algorithm described below.  It employs a rotating block proposer  strategy  where  
the  validators  take  turns  to   propose  new  blocks.  Then,  the committee votes on the blocks to 
determine their order using a protocol similar to Casper FFG and Hot-Stuff.

The validators rotate in a round robin fashion to play the role of block proposer, which is responsible 
for proposing the next block for the validator committee to vote on. To enable the round  robin  
rotation, each  proposer  maintains a local logical clock called epoch. Assuming there are m valida-
tors, during epoch t, the validator with index (t mod m) is elected as the proposer for that epoch. We 
note it is important that:

1)   The  epoch  t   should   not  be  stalled  so  the  liveness  of  the  proposer  rotation  is 
guaranteed; and
2)   The epoch t of different validators should be mostly in sync, i.e. most of the time all the 
validators have the same t value, so they can agree on which node should produce the next 
block.

The Block Settlement Process

Block Proposal

Interestingly,  the   immutability   characteristic   also  enhances  the  tolerance  to  network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus 
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on 
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint 
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To  provide  byzantine  fault  tolerance,  an  honest  node  needs  to  be  assured  that  at  least 
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive
 

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark 
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the 
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to 
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the 
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This 
requires each node to send, receive and process O(n) messages, where each message can be a 
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple 
hundred guardian nodes, unless we select a large T  value, which is undesirable since it increases the 
block finalization latency.
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Below is our protocol for proposer election and block proposal.

The protocol defines a message EpochChange(t + 1), which can be viewed as a synchronization 
message passed among the validators to assist them to advance to the next epoch t +  1 together.  
Essentially,  a  validator  broadcasts   message  EpochChange(t   +   1)   to  all  other validators if any 
of the following conditions is met:

Eventual Progression: All the honest nodes will eventually enter epoch t + 1. In the worst case, all  
the   honest   nodes   (at   least   2m/3   +    1   nodes)   reach  timeout  and   broadcast  the Epoch-
Change(t+1) messages. Under the timing model assumption, all these messages will be delivered 

On  the   other   hand,   the   validator   enters   epoch   t   +   1   when   it   has   received  2m/3 
EpochChange(t+1) messages from other nodes.

1)   the node has proposed or voted for a block in epoch t, or
2)   the node has received m/3 + 1 EpochChange(t + 1) messages from other validators, or
3)   the node timed out for epoch t (the timeout is set to 4 △ ).

Algorithm 1. The round robin block proposal protocol

Here we show that this protocol meets the above two requirements.

Interestingly,  the   immutability   characteristic   also  enhances  the  tolerance  to  network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus 
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on 
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint 
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To  provide  byzantine  fault  tolerance,  an  honest  node  needs  to  be  assured  that  at  least 
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive
 

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark 
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the 
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to 
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the 
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This 
requires each node to send, receive and process O(n) messages, where each message can be a 
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple 
hundred guardian nodes, unless we select a large T  value, which is undesirable since it increases the 
block finalization latency.
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The protocol to settle proposed blocks involves a PBFT-based voting procedure among all valida-
tors, similar to Casper FFG and Hot-Stuff. In the SKY Ledger blockchain, the header of each  block 
contains a hash pointer to its parent block (i.e. the previous block in the chain), similar to Bitcoin and 
Ethereum. Two blocks are conflicting if neither block is an ancestor of the other. If there are multiple, 
conflicting block proposals for the same epoch, an honest validator keeps all of them until one 
becomes settled, and then it discards all conflicting blocks.

The block settlement protocol operates epoch by epoch. The proposer for the current epoch sends 
to all validators a block proposal. A validator reacts by broadcasting a vote for the block. All messag-
es are signed by their senders.

The header of the proposed block might carry a commit-certificate, which consists of at least (2m/3 
+ 1) signed votes for its parent block. We note that under the assumption that no more than m/3 
validators are faulty, at most one block per height can obtain a commit-certificate. A commit-certifi-
cate for a block indicates this block and all its predecessors are committed. The proposed block may 
carry no commit-certificate, if its parent block did not get ≥ 2m/3 +  1 signed votes.

For the validators that are not the current proposer, their job is to vote on the proposed blocks. 
Once a validator receives the new block, it broadcasts a signed vote to all validators, so it can
 
be  collected  by  the  proposer  of  the  next  epoch  to  form  the  commit-certificate.  If  two con-
secutive blocks A and B both receive a commit-certificate, then the parent block A and all its prede-

Block Consensus Among Validators

within time  △  after being sent out. Thus each honest node will receive at least 2m/3 Epoch-
Change(t + 1) messages, and it then enters epoch t + 1.

Epoch Synchrony: Intuitively, this means the epochs of all the honest nodes “move together” More 
precisely, we claim that the time any two honest nodes enter epoch t + 1 differ by at most most 2 △ 
. To prove this, we note that since there are at mostf faulty nodes, for the first honest node to enter 
epoch t +  1, at least m/3 other honest nodes must have broadcasted the EpochChange(t + 1) 
messages. This honest node then also broadcasts an EpochChange(t + 1) message following the 
protocol. After at most  △ , any honest node should have received at least  m/3  +   1  Epoch-
Change(t  +  1)  messages,  which  triggers  them to also  broadcast the EpochChange(t + 1) mes-
sage. After  △ , all the honest nodes receive 2m/3 EpochChange(t + 1) messages and enter epoch t 
+ 1. Thus, at most 2 △ after the first honest node enters epoch t + 1, the last honest node will enters 
the same epoch.

In practice, when the network latency is small enough, all the honest nodes should enter epoch t + 1 
at almost the same time. As a result, they can agree on who is the next proposer. Also we note that 
for the actual implementation, the EpochChange(t +  1) messages can be combined with other 
types of messages (e.g. block votes) to improve the efficiency. So that in the normal case (no pro-
poser failure), no additional synchronization overhead is added to the system for epoch changes.

Interestingly,  the   immutability   characteristic   also  enhances  the  tolerance  to  network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus 
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on 
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint 
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To  provide  byzantine  fault  tolerance,  an  honest  node  needs  to  be  assured  that  at  least 
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive
 

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark 
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the 
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to 
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the 
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This 
requires each node to send, receive and process O(n) messages, where each message can be a 
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple 
hundred guardian nodes, unless we select a large T  value, which is undesirable since it increases the 
block finalization latency.
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Safety: Safety means all honest validators agree on the same chain of blocks. More precisely, if one 
honest validator accepts a block A, then any future blocks accepted by other honest validators will 
appear in a chain of blocks that already contains A. The argument for safety is similar to Casper FFG 
and Hot-Stuff and is omitted here. We just want to point out that safety stems from the requirement 
that honest nodes never vote for a block that conflicts with a settled block.

Liveness: Liveness means the validator committee always makes progress, i.e., always able to pro-
duce and agree on new blocks. Here we show that under our timing model, during the synchronous 

Analysis

cessors are considered settled. To ensure safety, we require that honest nodes never vote for a block 
that conflicts with a settled block. When there are forks (either due to faulty proposer or asynchro-
ny), the honest nodes should vote for the blocks on the longest fork.

The figure below illustrates the block settlement process. Assume that the proposer for height 101 is 
faulty, and it proposed two conflicting blocks X101 and Y101, which leads to two branches. Assum-
ing neither block X101 nor Y101 gets ≥ 2m/3 + 1 votes, then, neither the header of X102 nor Y102  
contains the commit-certificate (denoted by nil in the figure). However, at some point branch X 
grows faster, and two consecutive blocks X102  and X103  both obtain ≥ 2m/3 + 1 votes. After that 
the upper branch X up to block X102  is considered settled. And the lower branch Y can be discard-
ed.

The above example also illustrates one advantage of our implementation compared to other PBFT 
based protocols like Tendermint — a block that does not receive a commit-certificate can also be 
included in the settled chain, as long as one of its successor blocks is settled. For instance, block 
X101   in the example did not get a commit-certificate, but after block X102  is settled, it is also 
considered settled. This reduces the waste of computation power and helps increase the transaction 
throughput.

Figure 6. The block settlement process

Interestingly,  the   immutability   characteristic   also  enhances  the  tolerance  to  network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus 
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on 
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint 
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To  provide  byzantine  fault  tolerance,  an  honest  node  needs  to  be  assured  that  at  least 
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive
 

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark 
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the 
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to 
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the 
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This 
requires each node to send, receive and process O(n) messages, where each message can be a 
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple 
hundred guardian nodes, unless we select a large T  value, which is undesirable since it increases the 
block finalization latency.
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In  this  section,  we  will  discuss  the  “leapfrogging”  block  finalization  process  in  detail.  As 
mentioned  above,  the  guardians  only   need  to   reach  consensus  on  the  hashes  of  the check-
point blocks, which are the blocks whose heights are multiple of of some integer r (e.g. r = 100).

To see why it is sufficient to finalize just the checkpoint blocks, we note that the transaction execu-
tion engine of the blockchain software can be viewed as a “deterministic state machine”, whereas a 
transaction can be viewed as a deterministic state transfer function. If two nodes run the same state 
machine, then from an identical initial state, after executing the same sequence of transactions, they 
will reach an identical end state. Note that this is true even when some of the transactions are 
invalid, as long as those transactions can be detected by the state machine and skipped. For exam-
ple, assume there is a transaction that tries to spend more tokens than the balance of the source 
account. The state machine can simply skip this transaction after performing a sanity check. This 
way the “bad” transactions have no impact on the state.

In the context of blockchain, if all the honest nodes have the same copy of the blockchain, they can 
be ensured to arrive at the same end state after processing all the blocks in order. But with one 
caveat — the blockchain might contain a huge amount of data. How can two honest nodes compare 
whether they have the same chain of blocks efficiently?

Here the immutability characteristic of the blockchain data structure becomes highly relevant. Since 
the header of each block contains the hash of the previous block, as long as two nodes have the 
same hash of the checkpoint block, with overwhelming probability, they should have an identical 
chain of blocks from genesis up to the checkpoint. Of course each guardian node needs to verify the 
integrity of the blockchain. In particular, the block hash embedded in each block header is actually 
the hash of the previous block. We note that a node can perform the integrity checks on its own, no 
communication with other nodes is required.

periods, the committee can always achieve the liveness goal. First, in the “ Block Proposal” section, 
we have proved that the epoch can always advance, and all the honest
 

validators march forward together. In an epoch where the proposer is an honest validator, it will 
propose a new block. For the block settlement process, liveness depends on that during the syn-
chronous periods, there are infinitely many epochs where two proposers in a row are honest, and 
wait sufficiently long to form the commit-certificate. We note this is guaranteed to happen infinitely 
often with the round robin rotation, since at least 2/3 of the validators are honest.

Transaction throughput: With ten to twenty validators, the committee can produce and settle the 
chain of blocks rather quickly. Average block production and settlement time is in the order of 
seconds, and this leads to high throughput of as much as 1000+ transactions per second.

The Block Finalization Process

Interestingly,  the   immutability   characteristic   also  enhances  the  tolerance  to  network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus 
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on 
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint 
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To  provide  byzantine  fault  tolerance,  an  honest  node  needs  to  be  assured  that  at  least 
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive
 

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark 
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the 
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to 
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the 
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This 
requires each node to send, receive and process O(n) messages, where each message can be a 
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple 
hundred guardian nodes, unless we select a large T  value, which is undesirable since it increases the 
block finalization latency.



19

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

To  reduce  the  communication  complexity  and  scale  to  thousands  of  guardians,  we  have 
designed an aggregated signature gossip scheme inspired by the BLS signature aggregation tech-
nique16  and the gossip protocol. The scheme requires each guardian node to process a much 
smaller number of messages to reach consensus, which is much more practical. Below are  the steps 
of the aggregated signature gossip  protocol.  It  uses the  BLS algorithm for signature aggregation.

Scaling to Thousands of Guardians

Interestingly,  the   immutability   characteristic   also  enhances  the  tolerance  to  network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus 
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on 
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint 
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To  provide  byzantine  fault  tolerance,  an  honest  node  needs  to  be  assured  that  at  least 
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive
 

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark 
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the 
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to 
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the 
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This 
requires each node to send, receive and process O(n) messages, where each message can be a 
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple 
hundred guardian nodes, unless we select a large T  value, which is undesirable since it increases the 
block finalization latency.

Algorithm 2. The aggregated signature gossip protocol
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The core idea is rather simple. Each guardian node keeps combining the partially aggregated signa-
tures from its neighbors, and then gossips this newly aggregated signature out. This way the signa-
ture share of each node can reach other nodes at exponential speed by using the gossip protocol. In 
addition, the signature aggregation keeps the size of the messages small, and thus reduces the 
communication overhead.

In the above diagram, i is the index of the current guardian node. The first line of the protocol uses 
function SignBLS() to generate its initial aggregated signature  σi  . It essentially signs a message 
which is the concatenation of the height and hash of the checkpoint block using the BLS signature 
algorithm, with multiplicative cyclic group G of prime order p, and generator g:

In the first formula above, function H : G × {0 ,  1}*  → G  is a hash function that takes both the 
public key pki and the message as input. This is to prevent the rogue public-key attack17.

The protocol also uses function InitSignerVector() to initialize the signer vector ci  , which is an n 
dimensional integer vector whosejth  entry represents how many times thejth  guardian has signed 
the aggregated signature. After initialization, its  ith  entry is set to 1, and the remaining entries are 
all set to 0.
After initialization, the guardian enters a loop. In each iteration, the guardian first sends out its 
current aggregated signature σi   and the signer vector ci   to all its neighbors. Then, if it has not 
considered the checkpoint as finalized, it waits for the signature and signer vector from all its neigh-
bors, or waits until timeout. Upon receiving all the signature and signer vectors, it checks the validity 
of ( σj , cj ) using the BLS aggregated signature verification algorithm.

where e : G × G → GT   is a bilinear mapping function from G × G  to GT, another multiplicative cyclic 
group also of prime order p. All the invalid signatures and their associated signer vectors are 
discarded for the next aggregation step. It is worth pointing out that besides heightcp, hashcp, the 
above check also requires the public key pku  of the relevant guardians as input. All this information 
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should be available locally, since when a guardian locks up its stake, its public key should be 
attached to the stake locking transaction which has already been written into the blockchain.  
Hence,  no communication with other nodes is necessary to retrieve these inputs.

The aggregation step aggregates the BLS signature σj, and updates the signer vector cj  . Note that  
for  the  vector   update,  we  take  mod  p   for  each  entry.  We  can  do  this   because e (hu, pku) 
∈ GT  , which is a multiplicative cyclic group of prime order p. This guarantees that the entries of 
vector cj can always be represented with a limited number of bits.

Here function I:  {true,  false} →  {1,  0}  maps a true  condition to 1, and false to 0. Hence the sum-
mation counts how many unique signers have contributed to the aggregated signature. If the signa-
ture is signed by more than two-third of all the guardians, the guardian considers the checkpoint to 
be finalized.

If  the  checkpoint  is  finalized, the aggregated signature will  be gossipped out in the next iteration. 
Hence within O(log(n)) iterations all the honest guardians will have an aggregated signature that is 
signed by more than two-third of all the guardians if the network is not partitioned.
The loop has L  iterations, L  should  be  in the order of O(log(n)) to allow the signature to propagate 
through the network.

Aggregated  Signature   Gossip  Correctness:  To  prove  the  correctness  of  the  aggregated signa-
ture gossip protocol, we need to prove two claims. First, if an aggregated signature is correctly 
formed by honest nodes according to Algorithm 2, it can pass the check given by Formula (4). 
Second, the aggregated signature is secure against forgery. Stated more formally, forging a fake 
aggregated signature in the context of Algorithm 2 means to find σ ∈ G and integers c1, c2, … cn 
which satisfy the equation below

The algorithm then calculates the number of unique signers of the aggregated signature.

Analysis
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for randomly chosen pk1  = gsk1  , …, pkn  = gskn   ∈ G , and random message hashes h1… , hn  ∈ 
G. It can be shown that this is as hard as the Computational Diffie-Hellman (CDH) problem. For the 
proof of these two claims, please refer to our multi-level BFT technical report.
Finalization  Safety:  Safety  of  the  block  finalization  is  easy  to  prove.  Under  the  2/3 superma-
jority honesty assumption, If two checkpoint hashes for the same height both get aggregated 
signatures from at least 2/3 of all guardians, at least one honest guardian has to sign different 
hashes for the same height, which is not possible.

Finalization Liveness: Without network partition, as long as L is large enough, it is highly likely that  
after  O(log(n))  iteration,  all the  honest  nodes will see an aggregated signature that combines the 
signatures of all honest signers. This is similar to how the gossip protocol can robustly spread a 
message throughout the network in O(log(n)) time, even with up to 1/3 byzantine nodes. When 
there is network partition, consensus for a checkpoint may not be able to  reach  finalization.  How-
ever,  after  the  network  partition  is  over,  the  guardian  pool can proceed to finalize the next 
checkpoint block. If consensus can then be reached, all the blocks up to the next checkpoint are 
considered finalized. Hence the finalization process will progress eventually.

Messaging Complexity: The aggregated signature gossip protocol runs for L iterations, which is in 
the order of O(log(n)). In each iteration, the guardian needs to send message ( σi  ,  ci  ) to all its 
neighboring guardians. Depending on the network topology, typically it is reasonable to assume that 
for an average node, the number of neighboring nodes is a constant (i.e. the number of neighbors 
does not grow as the total number of nodes grows). Hence the number of message a node needs to 
send/receive to finalize a checkpoint is in the order of O(log(n)), which is much better than the O(n) 
complexity in the naive all-to-all signature broadcasting
 

implementation. We do acknowledge that each message between two neighboring guardians 
contains an n dimensional signer vector  ci  , where each entry of  ci    is an integer smaller than 
prime p. However, we note that this vector can be represented rather compactly since most of its 
entries are small integers (�p) in practice.
To get a more concrete idea of the messaging complexity, let us work out an example. Assume that 
we pick a 170-bit long prime number p for the BLS signature, which can provide security compara-
ble to that of a 1024-bit RSA signature. And there are 1000 guardians in total. Under this setting,  ci     
can  be represented with about twenty kilobytes without any compression. Since most of the entries 
of ci   are far smaller than p, ci   can be compressed very effectively to a couple kilobytes long. Plus 
the aggregated signature, the size of each message is typically in the kilobytes range.  Moreover, if 
we assume on average an guardian connects to 20 other guardians, then L  can be as small as 5 
(more than twice of log20(1000) = 2.3). This means finalizing  one  checkpoint  just  requires  a  
guardian  to  send/receive  around  100  messages to/from  its  neighbors,  each  about  a  couple  
kilobytes  long.  This  renders  the  aggregated signature gossip protocol rather practical to imple-
ment and can easily scale to thousands of guardian nodes. For further analysis, please also refer to 
our multi-level BFT technical report.
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Reward and Penalty for Validators and Guardians

The token reward and penalty structure is essential to encourage nodes to participate in the con-
sensus process, and not to deviate from the protocol.

Both the validators and guardians can obtain a token reward. Each block includes a special Coinbase  
transaction  that  deposits   newly  minted  tokens  to  the  validator  and  guardian addresses. All 
the validators can get a share of tokens for each block. For guardians, rewarding every guardian for 
each block might not be practical since their number is large. Instead, we propose the following 
algorithm to randomly pick a limited number of guardians as the reward recipient for each block.
Denote the height of the newly proposed block by l, and cp is the most recently finalized checkpoint.   
The   proposer   should    have   received   the   aggregated   signature    σcp       and corresponding 
signer vector ccp  for checkpoint cp. Upon validating (σcp ,  ccp) , the proposer can check the 
following condition for each guardian whose corresponding entry in vector ccp   is not zero (i.e. that 
guardian signed the checkpoint)

where Bl−1 is the hash of the block with height  l − 1 , and   H  : G × {0 ,  1}*  → G  is the same hash 
function used in the BLS signature algorithm. If the inequality holds, the proposer adds the guardian 
with public key pki   to the Coinbase transaction  recipient  list. Threshold τ   is chosen properly such 
that only a small number of guardians are included. The proposer should also attach (σcp , ccp) to 
the Coinbase transaction as the proof for the reward.

The SKY ledger also enforces a token penalty should any malicious behavior be detected. In particu-
lar, if a block proposer signs conflicting blocks for the same height, or if a validator votes for differ-
ent blocks of the same height, they should be penalized. Earlier we mentioned that to become either 
a validator or a guardian, a node needs to lock up a certain amount of tokens for a period of time. 
The penalty will be deducted from their locked tokens. The node that detects the malicious behavior 
can submit a special Slash transaction to the blockchain. The proof of
 

the malicious behavior (e.g. signatures for conflicting blocks) should be attached to the Slash trans-
action. The penalty tokens will be pulled from the malicious node and awarded to the node that 
submitted the first Slash transaction.

In  the  unlikely  event  that  more  than  one-third  of  the  validators  are  compromised,  the mali-
cious  validators  can  attempt  to  perform  the  double  spending  attack  by  forking  the block-
chain from a block that is settled but not yet finalized. However, this is detectable by the guardian 
pool, since forking will generate multiple blocks with the same height, but signed by more than 
two-third of the validators. In this case, the validators that conducted the double signing will be 
penalized, and the entire validator committee will be re-elected. After the validator committee is 
reinstated, the blockchain can continue to advance from the most recent finalized checkpoint.
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Turing-Complete Smart Contract Support
This SKY  Ledger offers a smart contract runtime environment fully compatible with the Ethereum  
Virtual  Machine18.  It  provides  full-fledged  support  for  Turing-Complete  smart contracts. Solidi-
ty-based Ethereum smart contracts can be ported to the SKY Ledger with little effort. Solidity19  
has grown a large developer community and the prospect of allowing that proven talent pool to also 
contribute to SKY without reinventing the wheel was a prime consideration in enabling compatibility 
with the Ethereum Virtual Machine.

Smart contracts enable rich user experiences and new attribution models for video platform DApps 
built on the SKY Ledger. For example, video platforms can write smart contracts for loyalty programs 
to engage users. Based on users’ activity, or the volume of video segments / data they have relayed, 
platform DApps may promote users to a higher tier, which unlocks certain  privileges  or  exclusive 
capabilities. As another example, video  platforms can  issue virtual items backed by the ledger 
blockchain (e.g. a virtual rose) for gifting to their favorite content creators. To expand on such a 
concept, built on the “non-fungible token” standard, the virtual  items  could  be  rare  or  entirely   
unique,  such  that  they  are  essentially  “crypto collectibles”, which can be kept as trophies or 
traded for other sought after collectibles, all without additional permissions from 3rd parties.

Moreover,  video  platforms  are  able  to  write  smart  contracts  that  enable  more  fluid pay-
ment-consumption  models,  such  as  pay-as-you-go  or  per-use  models.  Instead  of traditional 
annual or monthly subscriptions, user consumption can be priced at a bite-sized granularity, such 
that users only need to pay for what they use. This is a feasible way to allow low-priced, short-form 
content to be transacted in an economically sensible way, that accrues benefits  to  both  the  video  
platform  and  user.  SKY  Ledger’s  properties  of  tracking micropayments and video segments 
enables such smart contracts to be executed.
Smart contracts can also be designed to the benefit of content creators (e.g. user-generated con-
tent producers, larger production studios) as a way to fairly and transparently distribute royalties.  
The  traditional  royalty  settlement  processes,  with  all  their  complexities  and obscurities, can be 
accommodated with clear smart contract terms that are mutually agreed upon by creators and 
distributors - and made available to users that consume the content.

Leveraging smart contracts on the SKY  Ledger to enable fully digitized item ownership, innovative 
payment-consumption models, and transparent royalty distributions provide an additional layer of 
social and economic interactivity that supplements the core functionality of video/content delivery.

As discussed in the introduction section, support for high transaction throughput is a must for a 
video streaming focused blockchain. We build the support for off-chain payment directly into the 
ledger to facilitate high volumes of transactions.

Off-Chain Micropayment Support
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Resource Oriented Micropayment Pool

We have designed and implemented an off-chain “Resource Oriented Micropayment Pool” that is 
purpose-built for video streaming. It allows a user to create an off-chain micropayment  pool that 
any other user can withdraw from using off-chain transactions, and is double-spend  resistant. It is 
much more flexible compared to off-chain payment channels. In particular, for the video streaming 
use case, it allows a viewer to pay for video content pulled from multiple  caching  nodes  without  
on-chain  transactions.  By  replacing  on-chain  transactions  with off-chain   payments,  the   
built-in  “ Resource  Oriented   Micropayment  Pool”  significantly  improves the scalability of the 
blockchain.

The  following  scenario  and  diagram   provide  a  comprehensive  walkthrough  of  how  the 
Resource Oriented Micropayment Pool works in application.

Figure 7. Resource Oriented Micropayment Pool 
shows viewer Alice making off-chain transactions
to cachers Bob and Carol for video chunks
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A couple things to be noted. To create the pool, Alice needs to specify the “ Resource ID” 
resourceId that uniquely represents the digital content she intends to retrieve. It may refer to a 
video file, or a live stream.
The deposit amount needs to be at least the total value of the resource to be retrieved. For 
instance, if the resource is a video file which is worth 10 tokens, then the deposit has to be at 
least 10 tokens.
 
The  collateral  is  required  to  discourage  Alice  from  double  spending.  If  a  double spending  
attempt  from Alice  is  detected by the validators of the blockchain, the collateral will be slashed. 
Later in the blogpost we will show that if collateral > deposit, the net return of a double spend is 
always negative, and hence any rational user will have no incentive to double spend.

The  duration  is  a  time-lock  similar  to  that  of  a  standard  payment  channel. Any withdrawal 
from the payment pool has to be before the time-lock expires.
The blockchain returns Alice the Merkle proof of the CreatePool transaction after it has been 
committed to the blockchain, as well as createPoolTxHash, the transaction hash of the Create-
Pool transaction.

The targetAddress is the address of the peer that Alice retrieves the resource from, and the  
transferAmount  is  the  amount  of  token  payment  Alice  intends  to  send.  The targetSettle-
mentSequence  is to  prevent a replay attack.  It is similar to the “nonce” parameter  in  an  Ethe-
reum  transaction.   If  a  target   publishes  a  ServicePayment  transaction to the blockchain (see 
the next step), its targetSettlementSequence needs to increment by one.

The recipient peer needs to verify the off-chain transactions and the signatures. Upon validation,  
the  peer  can  send  Alice  the  resource  specified  by  the  CreatePool transaction.

targetAddress, transferAmount, createPoolTxHash, targetSettlementSequence,
Sign(SKA, targetAddress || transferAmount || createPoolTxHash ||

targetSettlementSequence)

CreatePool(resourceId, deposit, collateral, duration)

 Step  1.  Micropayment pool creation: As the first step, Alice  publishes an on-chain
transaction to create a micropayment pool with a time-lock and a slashable collateral.

Step  2.  Initial  handshake  between  peers:  Whenever  Alice  wants  to  retrieve  the specified 
resource from a peer (Bob, Carol, or David, etc.). She sends the Merkle proof of the on-chain 
CreatePool transaction to that peer. The recipient peer verifies the Merkle proof to ensure that 
the pool has sufficient deposit and collateral for the requested resource, and both parties can 
proceed to the next steps.

Step 3. Off-chain micropayments: Alice signs ServicePayment transactions and sends them to 
the peers off-chain in exchange for parts of the specified resource (e.g. a piece of the video file, 
a live stream segment, etc.). The ServicePayment transaction contains the following data:

Also,  we  note  that  the  off-chain  ServicePayment  transactions  are  sent  directly between 
two peers. Hence there is no scalability bottleneck for this step.
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The targetAddress is the address of the peer that Alice retrieves the resource from, and the  
transferAmount  is  the  amount  of  token  payment  Alice  intends  to  send.  The targetSettle-
mentSequence  is to  prevent a replay attack.  It is similar to the “nonce” parameter  in  an  Ethe-
reum  transaction.   If  a  target   publishes  a  ServicePayment  transaction to the blockchain (see 
the next step), its targetSettlementSequence needs to increment by one.

The recipient peer needs to verify the off-chain transactions and the signatures. Upon validation,  
the  peer  can  send  Alice  the  resource  specified  by  the  CreatePool transaction.

Step 4. On-chain settlement:  Any peer (i.e. Bob, Carol, or David, etc) that received the 
ServicePayment transactions from Alice can publish the signed transactions to the blockchain 
anytime before the timelock expires to withdraw the tokens. We call the ServicePayment    
transactions   that    are    published   the    “on-chain   settlement” transactions.

Note that the recipient peers needs to pay for the gas fee for the on-chain settlement 
transaction. To pay less transaction fees, they would have the incentive to publish on-chain 
settlements only when necessary, which is beneficial to the scalability of the network.

Also,  we  note  that  the  off-chain  ServicePayment  transactions  are  sent  directly between 
two peers. Hence there is no scalability bottleneck for this step.

We note that no on-chain transaction is needed when Alice switches from one peer to another to 
retrieve the resource. In the video streaming context, this means the viewer can switch to any cach-
ing node at any time without making an on-chain transaction that could potentially block or delay 
the video stream delivery.  As shown in the figure, in the event that Bob leaves, Alice can switch to 
Carol after receiving k chunks from Bob, and keep receiving video segments without an on-chain 
transaction.
Moreover, the total amount of tokens needed to create the micropayment pool is (collateral + 
deposit), which can be as low as twice of the value of the requested resource, no matter how many 
peers Alice retrieves the resource from. Using computational complexity language, the amount of 
reserved token reduces from O(n) to O(1) compared to the unidirectional payment channel 
approach, where n is the number of peers Alice retrieves the resource from.

To prevent Alice, the creator of the micropayment pool from double spending, we need to 1) be able 
to detect double spending, and 2) ensure that the net value Alice gains from double spending is 
strictly negative.

Detecting double spending is relatively straightforward. The validators of the SKY Network check 
every on-chain transaction.  If a remaining deposit in the micropayment pool cannot cover the next 
consolidated payment transaction signed by both Alice and another peer, the validators will consider 
that Alice has conducted a double spend.

Next, we need to make Alice worse off if she double spends. This is where the collateral comes in.  
Earlier,  we  mentioned  that the amount  of collateral tokens has to be larger than the deposit. And 
here is why.

In Figure 8 below, Bob, Carol, and David are honest. Alice is malicious. Even worse, she colludes with 
another malicious peer Edward. Alice exchanges partially signed transactions with Bob, Carol, and 
David for the specified resource. Since Alice gains no extra value for the duplicated resource, the 
maximum value she gets from  Bob, Carol, and  David is at most the deposit amount. As Alice 

Double Spending Detection and Penalty Analysis

colludes with Edward, she can send Edward the full deposit amount. She then asks  Edward to 
commit the settlement transaction before anyone else and return her the deposit later. In other 
words, Alice gets the resource which is worth at most the deposit amount for free, before the double 
spending is detected. Later when Bob, Carol, or David commit the settlement transaction, the 
double spending is detected, and the full collateral amount will be slashed. Hence, the net return for 
Alice is
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colludes with Edward, she can send Edward the full deposit amount. She then asks  Edward to 
commit the settlement transaction before anyone else and return her the deposit later. In other 
words, Alice gets the resource which is worth at most the deposit amount for free, before the double 
spending is detected. Later when Bob, Carol, or David commit the settlement transaction, the 
double spending is detected, and the full collateral amount will be slashed. Hence, the net return for 
Alice is

Therefore, we can conclude that for this scenario, as long 
as collateral > deposit, Alice’s net return is negative. 
Hence, if Alice is rational, she would not have any incen-
tive to double spend.

We can conduct similar analysis for other cases. The 
details are omitted here, but it can be shown that in all 
cases Alice’s net return is always negative if she conducts 
a double spend.

Another case is that Alice is honest, but some of her 
peers are malicious. After Alice sends a micropayment to 
one of those peers, it might not return Alice the resource 
she wants. In this case, Alice can turn to another peer to 
get the resource. Since each incremental micropayment 
can be infinitesimally small in theory, Alice’s loss can be 
made arbitrarily small.

Figure 8. Malicious Actor Detection and Penalty shows 
malicious actor Alice attempting to
make a double spend and the resulting penalty she 
receives



The above example also illustrates one advantage of our implementation compared to other PBFT 
based protocols like Tendermint — a block that does not receive a commit-certificate can also be 
included in the settled chain, as long as one of its successor blocks is settled. For instance, block 
X101   in the example did not get a commit-certificate, but after block X102  is settled, it is also 
considered settled. This reduces the waste of computation power and helps increase the transaction 
throughput.

Interestingly,  the   immutability   characteristic   also  enhances  the  tolerance  to  network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus 
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on 
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint 
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To  provide  byzantine  fault  tolerance,  an  honest  node  needs  to  be  assured  that  at  least 
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive
 

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark 
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the 
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to 
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the 
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This 
requires each node to send, receive and process O(n) messages, where each message can be a 
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple 
hundred guardian nodes, unless we select a large T  value, which is undesirable since it increases the 
block finalization latency.
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Using a public ledger to facilitate the micropayments for streaming is challenging, not only because 
of high transaction throughput, but also for storage space management. To achieve the 
“pay-per-byte” granularity, each viewer could send out a payment every few seconds. With even a 
moderate ten thousand concurrent users, it could generate a couple thousands of transactions per 
second.  Even with the off-chain payment pool which already reduces the amount of on-chain 
transactions dramatically, the block and state data could still balloon rather quickly.

We have designed a storage system that addresses this problem, and can adapt to different types of 
machines, be it a powerful server cluster running in data centers, or a commodity desktop PC.

To harness the processing and storage power of server clusters, the key design decision is to adopt 
the popular microservice architecture commonly seen for modern web service backends, where 
different modules of the ledger can be configured to run on different machines. In particular, the 
consensus module and the storage module can be separated. Potentially the consensus module can 
run on multiple machines using the MapReduce framework to process transactions in parallel.

The SKY Ledger stores both the transaction blocks and the account state history, similar to Ethere-
um. The bottom  layer of the storage module is a key value store. The SKY Ledger implements the 
interfaces for multiple databases, ranging from single machine LevelDB to cloud based NoSQL 
database such as MongoDB, which can store virtually unlimited amount of data. Thus the ledger can 
run on one single computer, and can also be configured to run on server clusters.

Ledger Storage System

Storage Microservice Architecture

While  the  microservice  architecture  suits  
the  powerful  server  clusters  well,  we  still  
face storage  space  constraints  when  run-
ning  the  ledger  on  a  lower-end  home  PC.  
We  have designed several techniques to 
reduce the storage consumption.

Similar to Ethereum, the SKY Ledger stores 
the entire state for each block, and the state 
tree root is saved in the header of the corre-
sponding block. To reduce the space con-
sumed by the state history, the SKY Ledger 
implements state history pruning, which 
leverages a technique called reference count-
ing illustrated in the figure below.

History Pruning

Figure 9. State history pruning with reference counting
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The ledger state (i.e. the token balance of each account, etc.) is stored using a Merkle-Patricia trie. 
Figure 9(a) depicts the initial state tree, whose root is denoted by State 0. Each node in the tree has 
an attribute called the “reference count”, which is equal to the number of parents of the node. In the 
initial state tree, each node has only one parent, so the reference count are all set to 1.
In Figure 9(b), account A is updated to A* after applying the transactions in the newly settled block.  
Hence  a  new  Merkle  state  root  State   1   is  created,  along  with  the  Merkle  branch connecting 
the  new  root  State  1  and A* (the blue nodes and edges). Since new nodes are added, we update 
the reference count of direct children of these new nodes from 1 to 2.
At some point we decided to delete State  0  to  save some storage space. This is done by deleting 
the nodes whose reference count is zero recursively starting from the root State 0, until no node can 
be deleted. Whenever a node is deleted, the reference count of all its children will  be decremented  
by one.  Figure 9(c) illustrates the process, and Figure 9(d) shows the result of the pruning. To 
achieve the maximum level to state storage compaction, once a block is finalized by the guardian 
pool, we can delete all the history prior to that block. The ledger can also be configured to keep a 
limited history of states, for example, the state trees of the latest 1000 blocks, depending on the 
available storage space.

It can be shown that with the reference counting technique, pruning a state tree has the time com-
plexity of O(k log N), where k is the number of accounts updated by the transactions in one block, 
and N is the total number of accounts. Typically, k  is  in the range of a couple hundreds to a thou-
sand. Hence, pruning a state tree should be pretty efficient and should not take much time.
 
Managing the space consumed by the transaction blocks is even simpler, after a block is finalized, 
we can simply delete all its previous blocks, or keep a limited history similar to the state trees.

With these techniques, common PCs and laptops are sufficient to run the guardian nodes.

One of the pain points using earlier generation blockchains is the state synchronization time. After 
spinning up a new node, typically it needs to download the full block history all the way from the 
genesis block. This could take days to complete, and already becomes a hurdle for user adoption.
The state and block history stored by the full nodes can help reduce the synchronization time 
dramatically. After a new node start, the first step is to download all the validator and guardian 
join/leave transactions and the headers of the blocks that contain these special transaction up to 
the latest finalized block. With these special transactions and the headers which contain the valida-
tor and guardian signatures, the new node can derive the current validator committee and guardian 
pool. Since the validator and guardian set changes are relatively infrequent, the amount of data 
need to be downloaded and verified for this step should be minimal.
In  the  second  step,  the  new  node  downloads the  state tree corresponding to the  latest final-
ized block. And it needs to confirm that the root hash of the tree equals the state hash stored in the 
latest finalized block. Finally, the new node verifies the integrity of the state tree (e.g. the validity of 
the Merkle branches). If all the checks are passed, the new node can start listening to new blocks 
and start participating in the consensus process.

State Synchronization
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A Dual Currency System and Token Mechanics
In the interest of securing the network, installing proper governance, and managing the usage of 
the network, the SKY blockchain will use a dual currency system. The SKY token will be used  to  
stake,  secure,  and  govern  the  SKY  Network,  while  individual  operations  (video segment trans-
actions, smart contract operations, etc.) will be paid for with the operational token, Gamma.

There are two key reasons to introduce a second token:

First, this allows the utility and purpose of each token to be separated. SKY is used strictly for stak-
ing and securing the network, while Gamma is used to power utility-based operations of the  net-
work. This  is  necessary  because staking inherently decreases circulating supply, but video segment 
transactions and smart contracts will require a highly-liquid token that can facilitate millions of daily 
transactions.

Second, two tokens are needed to solve possible consensus issues that arise from using the same 
token for staking and operations. Because the token used for operations must be liquid, it would   be   
easier   for   a   malicious   actor   to   accumulate   a   significant   number  of  that frequently-traded 
token on the open market. If that same token is also used for staking, they could potentially threat-
en the security of the SKY Network. By separating the two functions (staking and operations) into 
different tokens, that risk is greatly decreased.

As an ERC20 token, the SKY token supply is currently fixed at 1 billion. At Mainnet launch, each 
holder of the ERC20 SKY token will receive native SKY tokens on the new blockchain on a 1�1 basis. 
The supply of native SKY on the new blockchain will also be permanently fixed at 1 billion, meaning 
no new SKY tokens will ever be created.
The primary reason for fixing the SKY token supply is to make it prohibitively expensive for a mali-
cious actor to acquire enough tokens to threaten the network. Since new SKY tokens will never be 
created, the only way to acquire more is by purchasing existing tokens and over time making it more 
expensive to amass a controlling amount of SKY tokens.

SKY Token Supply and Mechanics

Gamma is the operational token of the SKY blockchain, used as the “gas” to pay for video segment 
microtransactions and smart contract operations. The Gamma token is also built on the SKY block-
chain and 5,000,000,000 Gamma will be generated at the time of Mainnet launch. This initial supply 
of Gamma will be distributed to all SKY token holders at the point of token swap, seeding the 
network with enough Gamma for the network to function effectively.

At the time of the token swap, each SKY token holder will also receive 5 Gamma tokens for each SKY 
token they hold. Initially, there will be no increase in the number of Gamma tokens until the 
multi-level BFT consensus mechanism is launched and the guardian pool is formed. After that point, 

Gamma Token Supply and Mechanics

validators and guardian nodes will each be required to stake SKY tokens to perform   their   respec-
tive   functions.   Both   validators   and   guardians   will   earn   Gamma proportionally according to 
the number of SKY tokens they have staked, with total rewards equal to a target increase in the 
supply of Gamma. The target increase in supply of Gamma will initially be set at 5% annually. This 
rate may be adjusted dynamically in response to demand for Gamma from video platforms. In other 
words, the supply of Gamma will increase by 5% over the year, and if you run a guardian node and 
stake SKY tokens, your share of those new Gamma tokens will equal your share of staked SKY 
tokens as a percentage of the total staked SKY tokens.

To help maintain the appropriate amount of Gamma in circulation, all Gamma used as gas to deploy 
or interact with smart contracts will be burned (permanently destroyed). By having both Gamma 
generation and destruction tied to network usage/adoption, the number of Gamma tokens will 
maintain a healthy equilibrium relative to demand.
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validators and guardian nodes will each be required to stake SKY tokens to perform   their   respec-
tive   functions.   Both   validators   and   guardians   will   earn   Gamma proportionally according to 
the number of SKY tokens they have staked, with total rewards equal to a target increase in the 
supply of Gamma. The target increase in supply of Gamma will initially be set at 5% annually. This 
rate may be adjusted dynamically in response to demand for Gamma from video platforms. In other 
words, the supply of Gamma will increase by 5% over the year, and if you run a guardian node and 
stake SKY tokens, your share of those new Gamma tokens will equal your share of staked SKY 
tokens as a percentage of the total staked SKY tokens.

To help maintain the appropriate amount of Gamma in circulation, all Gamma used as gas to deploy 
or interact with smart contracts will be burned (permanently destroyed). By having both Gamma 
generation and destruction tied to network usage/adoption, the number of Gamma tokens will 
maintain a healthy equilibrium relative to demand.

The validator set will initially be made up of nodes operated by SKY Labs, to be followed by addi-
tional validator nodes operated by key strategic partners. Eventually, guardian nodes that perform 
to a high-standard (node availability, hardware and bandwidth requirements, etc.) and stake a 
sufficient number of SKY tokens may be eligible to participate as a validator node on a rotating  
basis. Our end goal  is for a validator set comprised of SKY Labs, video platform partners, and 
community members where no single entity or group has enough control of the network to act 
maliciously. If any validator(s) were to act maliciously, the guardian pool should be sufficiently diver-
sified that it would act as a second line of defense to prevent malicious acts and remove malicious 
validators. Malicious actors that take actions to harm the network will also have their staked SKY 
slashed (forfeited).

We expect guardian node functionality to launch in a major upgrade following Mainnet launch. A 
standalone client will be released allowing users to operate a guardian node and stake their
 

SKY tokens. As currently constructed the protocol can support up to 1,000 guardian nodes without 
sacrificing transaction throughput. To achieve the optimal set of guardian nodes, we expect to set a 
range of approximately 100,000 - 1,000,000 SKY tokens permitted to be staked  per  guardian  
node.  These  figures  may  be  adjusted  based  on  further  testing  and community feedback 
between now and Mainnet launch.

Validator and Guardian Nodes
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Future Work

In  this whitepaper, we  introduced the SKY  protocol,  a  new  blockchain and token as the incentive  
mechanism  for  a  decentralized  video  streaming   network.  The  SKY   Network encourages view-
ers to share their computing and bandwidth resources and solves a number of technical and busi-
ness challenges.

There are many other technical aspects of the protocol and network which we classify as future 
work, beyond the initial launch of the native SKY Network:

●    Anti-Piracy. The network can be expanded to include anti-piracy - since tokens may be used to 
stream and cache certain content, the tokens serve as a “disincentive” within the network as the 
content can be tagged as required tokens or “premium content”

●    General  Purpose  Service  Platform.  The  SKY  protocol  is  in  fact independent  of streaming. It 
can be extended to handle other types of service (e.g. share computing resources) to allow end 
users to receive service for free.

●    Sidechain/Plasma  for  “Infinite  Transaction  Throughput” .  With  the   support  for Turing-Com-
plete smart contracts, the SKY blockchain, it is possible to build layer-2 constructs like side-
chain, state channel20, Plasma21  on top of the SKY blockchain to achieve unlimited transaction 
throughput.
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Founding 
& Advisory Team

The founding members of the SKY Network include:

Mr. Liu is the co-founder and CEO of SLIVER.tv, the leading esports entertainment platform with 
patented technology to live stream top esports events in fully immersive 360 ° VR in partnership with 
Intel Extreme Masters, Turner ELEAGUE, ESL One and Dreamhack among other global tournament 
operators. Along with his co-founder Mr. Long, they currently hold two patents and two additional 
pending patents for virtual reality 360 ° video streaming, and new algorithms for generating highly 
efficient live spherical video streams.
In  2010,  Mr.  Liu  co-founded  Gameview  Studios best known  for its  Tap  Fish mobile  game 
franchise with nearly 100 Million downloads. The company was acquired by DeNA, a leading Japa-
nese  mobile  gaming  company  within  6  months of launch. Prior to that, he co-founded Tapjoy  in  
2007,  a  pioneer  of  rewarded  social  and  mobile  video  advertising,  and  grew that company to 
$100MM in revenues. He received a BS in Computer Science & Engineering from MIT,  completed  his  
thesis  research  at  MIT  Media  Lab “ Interactive Cinema” video group and received a MBA from 
Stanford Graduate School of Business.

Mitch Liu

Mr. Long is the co-founder and Chief Technology Officer of SLIVER.tv. He leads the technical team 
and developed multiple patented technologies including VR live streaming and instant  replay  for  
video  games.  He  received  a  B.S.  degree  in Microelectronics  from  Peking University  in  Beijing,  
China.  He  also  received  a Ph.D. degree  in  Computer  Engineering from Northwestern University 
in Evanston, IL where he conducted research in mathematical modeling and algorithms to optimize 
large scale electronics systems, and a cryptography enthusiast.

Jieyi Long
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The advisory team to SKY includes:

Mr. Nichols is the Head of Product and Platform for SLIVER.tv. He leads the company’s  eSports  
entertainment  platform built  around  one  of  the  largest  esports  virtual economies with 1B+ 
virtual tokens circulated within two months of launch. Leading previous startups,  he’s  designed  
and  launched  virtual  currency  systems  for  a  variety  of  multiplayer games,  including  a  
cross-game  virtual  currency API  used  by  hundreds  of third-party  game developers and tens of 
millions of players worldwide. Mr. Nichols was a director for Tencent on the globally popular WeChat 
app, and a co-founder of a live video streaming app for foodies.

Ryan Nichols

Mr. Virk is an advisor, investor and the interim Head of Corporate Development at SLIVER.tv. Mr. Virk 
also serves as the current director of Play Labs @ MIT, and did his research at the MIT Media Lab. Mr. 
Virk is an early investor in cryptocurrency and blockchain companies, including Ripio/BitPagos, 
CoinMkt, Bex.io, and has been active with BitAngels since 2013. Mr. Virk is the co-author of several 
cryptocurrency related papers including Online Automatic Auctions for Bitcoin  Over-The-Counter 
Trading (2015) and Creating a Peer to Peer System for Buying and Selling Bitcoin Online (2013) and 
was the designer of Bitcoin Bazaar, one of the first peer-to-peer mobile applications for in-person 
trading of bitcoin. Mr. Virk received his BS in Computer Science & Engineering from  MIT  and  his  
Master’s  in  Management  from  Stanford  Graduate  School  of Business.

Rizwan Virk


