
A Decentralized Video Delivery
and Streaming Network
Powered by a New Blockchain

White Paper
Version 1.0SKY

01

Abstract
This whitepaper introduces the SKY Network, a new blockchain and token as the incentive

mechanism for a decentralized video streaming and delivery network.

The SKY Network and protocol solves various challenges the video streaming industry faces

today. First, tokens on the SKY blockchain are used as an incentive to encourage individual

users to share their redundant computing and bandwidth resources as caching or relay

nodes for video streams. This improves the quality of stream delivery and solves the “

last-mile” delivery problem, the main bottleneck for traditional content delivery pipelines,

especially for high resolution high bitrate 4k, 8k and next generation streams.

Second, with sufficient network density the majority of viewers will pull streams from

peering caching nodes, allowing video platforms to significantly reduce content delivery

network (CDN) costs. More importantly, by introducing tokens as an end-user incentive

mechanism the SKY Network allows video platforms to deepen viewer engagement, drive

incremental revenues, and differentiate their content and viewing experience from their

competitors.

The SKY blockchain introduces three main novel concepts:

Multi-Level BFT: A modified BFT consensus mechanism which allows thousands of

nodes to participate in the consensus process, while still supporting very high

transaction throughput (1,000+ TPS). The core idea is to have a small set of nodes,

which form the validator committee, produce a chain of blocks as fast as possible using

a PBFT-like process. Then, the thousands of consensus participants, called

guardians, finalize the chain generated by the validator committee at regular

checkpoint blocks. The name multi-level BFT consensus mechanism reflects the fact that

the validator/guardian division provides multiple levels of security guarantee. The

validator committee provides the first level of consensus — with 10 to 20 validators, the

committee can come to consensus quickly. The guardian pool forms the second line of

defense. With thousands of nodes, it is substantially more difficult for attackers to

compromise the integrity of the network, and thus provides a much higher level of

security. We believe this mechanism achieves a good balance among transaction

throughput, consistency, and level of decentralization, the three pillars of the so-called

“impossible triangle”

Multi-Level BFT: A modified BFT consensus mechanism which allows thousands of

nodes to participate in the consensus process, while still supporting very high

02

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

transaction throughput (1,000+ TPS). The core idea is to have a small set of nodes,

which form the validator committee, produce a chain of blocks as fast as possible using

a PBFT-like process. Then, the thousands of consensus participants, called

guardians, finalize the chain generated by the validator committee at regular

checkpoint blocks. The name multi-level BFT consensus mechanism reflects the fact that

the validator/guardian division provides multiple levels of security guarantee. The

validator committee provides the first level of consensus — with 10 to 20 validators, the

committee can come to consensus quickly. The guardian pool forms the second line of

defense. With thousands of nodes, it is substantially more difficult for attackers to

compromise the integrity of the network, and thus provides a much higher level of

security. We believe this mechanism achieves a good balance among transaction

throughput, consistency, and level of decentralization, the three pillars of the so-called

“impossible triangle”

Aggregated Signature Gossip Scheme: A basic all-to-all broadcasting of the

checkpoint block hash could work between guardian nodes, but it yields quadratic

communication overhead, and therefore cannot scale to 1,000+ nodes. Instead, we

propose an Aggregated Signature Gossip Scheme which significantly reduces

messaging complexity. Each guardian node keeps combining the partially aggregated

signatures from all its neighbors, and then gossips out the aggregated signature. This

way the signature share of each node can reach other nodes at an exponential rate,

 leveraging the gossip protocol. In addition, the signature aggregation keeps the size of

the node-to-node messages small, and thus further reduces the communication

overhead.

 Resource Oriented Micropayment Pool: An off-chain “ Resource Oriented

Micropayment Pool” that is purpose-built for video streaming. It allows a user to create

an off-chain micropayment pool that any other user can withdraw from using off-chain

transactions, and is double-spend resistant. It is much more flexible compared to

off-chain payment channels.

This white paper will describe these concepts and the SKY blockchain in detail. The SKY

Network launched with ERC20-compliant tokens and were integrated into the

SLIVER.tv platform in December 2017. The SKY blockchain mainnet code has been

released, and the first live mainnet implementation is planned to launch on March 15, 2019,

at which time each ERC20 SKY token will be exchanged 1�1 for native SKY tokens.

T A B L E O F C O N T E N T S

Vision

SKY Mesh Delivery Network

Introduction

Video Streaming Market
Video Streaming Challenges

01

Geo-Optimized Tracker Server
Intelligent Player Client

08

The Consensus Mechanism 11

Turing-Complete Smart Contract Support 24

Ledger Storage System 29

A Dual Currency System and Token Mechanics 31

Off-Chain Micropayment Support 24

09

��

Future Work ��

Founding & Advisory Team ��

��

SKY Blockchain Ledger ��

Background 03

Opportunity 05

01

02

Multi-Level BFT
System Model
The Block Settlement Process

11

The Block Finalization Process 18

Reward and Penalty for Validators and Guardians 23

Block Proposal
Block Consensus Among Validators
Analysis

14
16

Scaling to Thousands of Guardians
Analysis

19
21

17

13

Resource Oriented Micropayment Pool
Double Spending Detection and Penalty Analysis

25

27

Storage Microservice Architecture
History Pruning
State Synchronization

29

29
30

14

01

Introduction
Video Streaming Market

Vision

Figure 1. Global IP video traffic growth

Live video streaming accounts for over two-thirds of all internet traffic today, and it is expected to
jump to 82% by 2020, according to Cisco’s June 2016 Visual Networking Index report.1 In the US,
millennials between the ages of 18 and 34 are driving the growth of video streaming, and are heavy
users of services like Netflix, Youtube, and HBO. Streaming video among this group has jumped
256% from an average of 1.6 hours per week to 5.7 hours per week according to a SSRS Media and
Technology survey, and mobile devices are leading the charge in video consumption growing
44% in 2015 and 35% in 2016.2 The top five video streaming players in the US are Facebook,
Google/Youtube, Twitter and related properties, Live.ly and Twitch.

02

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

Video Streaming Challenges

Figure 2. Global virtual reality traffic growth3

At the same time, global virtual reality (VR) traffic including 360 ° video streaming content is
estimated to grow 61-fold by 2020, at a staggering 127% CAGR according to the same Cisco report.

Content Delivery Networks (CDN) play an important role in the video streaming ecosystem. It
provides the backbone infrastructure to deliver the video streams to end viewers. One major
limitation of today’s CDN networks is the so-called “last-mile” delivery problem. Typically, CDN
providers build data centers called Point-of-Presence (POPs) in many locations around the world,
with the expectation that these POPs are geographically close to the viewers. However, the number
of POPs are limited, hence are not near enough to the majority of viewers, especially in less
developed regions. This “ last-mile” link is usually the bottleneck of today’s streaming delivery
pipeline and often leads to less optimal user experience including choppy streams, bad picture
quality, and frequent rebuffering.

To streaming sites and content platforms, another major concern is the CDN bandwidth cost. For
popular sites, the CDN bandwidth cost can easily reach tens of millions of dollars per year. Even if
platforms own proprietary CDNs, maintenance costs are often high.

These issues are becoming even more prominent with the coming era of 4K, 8k, 360 ° VR
streaming, and upcoming technologies such as light field streaming. Table 1 compares the
bandwidth requirements of today’s mainstream 720p/HD streams vs 4K, 360 ° VR and future
lightfield streams, quickly jumping by orders of magnitude.

03

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

Background

Table 1. Bandwidth comparison: today’s 720p/1080p video vs 4K and 360 ° VR streaming,
vs future volumetric/lightfield streaming

To solve the VR and light field video delivery problem, the industry has started to explore “foveated
streaming” technology. Instead of streaming the entire video in full resolution, this technology
reduces the image quality in the peripheral vision (outside of the zone gazed by the fovea) in order
to reduce bandwidth requirements. As the viewer turns his or her head to look at a different
direction, the system adapts the spatial video resolution accordingly by fetching the high resolution
video packets for the viewing direction from the server. For the foveated streaming technology
to work well in practice, the round-trip time between the server and the viewer has to be small
enough. For viewers that are geographically further from the CDN POPs, their VR stream viewing
experience is compromised even with foveated streaming technology.

SLIVER.tv (the “company”) has been at the forefront of developing next-generation video
streaming technologies for VR and spherical 360 ° video streams since 2015, and is the parent
company to SKY Labs, Inc.. SLIVER.tv has raised over $17 Million in venture financing from notable
Silicon Valley VCs including Danhua Capital, DCM, Sierra ventures, leading Hollywood media
investors including Creative Artists Agency, BDMI, Advancit Capital, Greycroft Gaming Track Fund,
and marquee corporate investors including GREE, Colopl, Samsung Next and Sony Innovation
funds. Additionally, the company has strong Chinese investors and partners including
Heuristic Capital Partners, ZP Capital, Green Pine Capital Partners, and Sparkland.
In a technology derived from “foveated streaming” SLIVER.tv’s most recent technology patent
granted #9,998,664, “ METHODS AND SYSTEMS FOR NON-CONCENTRIC SPHERICAL
PROJECTION FOR MULTI-RESOLUTION VIEW”4, specifically addresses the problem of
generating highly efficient spherical videos for virtual reality (VR) streaming, highlight, and replay.
The technology performs non-concentric spherical projection to derive high resolution displays of
selected important game actions concurrently with lower resolution displays of static game
environments, thus optimizing tradeoff between visual fidelity and data transfer load.

Standard Resolution Bandwidth / Mbps Magnitude

720p HD

1080p HD

4K UHD

8K 360 ° VR

16K 360 ° VR

Lightfield

1080x720

1920x1080

3920x2160

7840x4320

15680x8640

5 to 7.5

8 to 12

32 to 48

128 to 192

512 to 768

5000+

1x

1.6x

6.4x

25x

100x

1000x

04

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

SLIVER.tv today is the leading next-generation live esports streaming platform with over six million
unique visits in July 2018, with a vision to transform the esports engagement experience. As
video gaming has grown in popularity to become a $40+ billion market, bigger than Hollywood and
Bollywood combined, the rise of multiplayer competitive gaming as a spectator sport has
become a major new industry, dubbed esports. Esports is a global phenomenon with major
tournaments and major pockets of fans and competitive teams in Europe, Asia and North America.
The online gaming and esports ecosystems have exploded over the past five years.
A recent 2017 SuperData research5 put the combined audience for gaming video content on
YouTube and Twitch at 665 million, more than twice the US population. This surpasses the viewership
of 227 million for HBO and Netflix combined. Today, esports and gaming video content account
for a significant portion of all video content streamed over the Internet.
SLIVER.tv additional core patents and technology focus on various applications of cutting edge live
streaming to esports content. The company’s US Patent #9,573,062 “ METHODS AND
SYSTEMS FOR VIRTUAL REALITY STREAMING AND REPLAY OF COMPUTER VIDEO GAMES”6,
US Patent #9,473,758 “ METHODS AND SYSTEMS FOR GAME VIDEO RECORDING AND
VIRTUAL REALITY REPLAY”7 and US Patent #9,782,678 “ METHODS AND SYSTEMS FOR
COMPUTER VIDEO GAME STREAMING, HIGHLIGHT, AND REPLAY”8 pioneer the capture and live
rendering of popular PC esports games including League of Legends, Dota2 and Counter-Strike:
Global Offensive in a fully immersive 360 ° VR spherical video stream, effectively placing the viewer
and audience inside the 3D game through a live video stream, and rendering 360 ° highlights,
replays and special effects in real-time.

Since launching in 2016, SLIVER.tv has broadcast numerous global esports tournaments in 360º
VR in partnership with premier brands including ESL One, DreamHack and Intel Extreme Masters. At
key events in the US and Europe, SLIVER.tv has live streamed top esports games to millions of fans
of Counter-Strike: Global Offensive (CS:GO) and League of Legends (LoL).9

SLIVER.tv launched its Watch & Win esports platform in July 2017 and the first virtual token
designed around esports content streaming and fan engagement. Since launch, the company has
attracted millions of esports fans circulating over 1 Billion virtual tokens by actively
participating and engaging with live esports matches. These users viewed over 50 million minutes
of live esports streaming, nearly 100 years worth of content in the first few weeks of launch. This
positions the company as one of the largest esports streaming sites built around a virtual
community today.10

The SLIVER.tv platform is continuing to expand quickly driven by word-of-mouth, referral and social
channels.

05

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

Figure 3. Total visits on desktop and mobile web, in the last 6 months

Opportunity
The company’s mission is to leverage blockchain technology to create the first Decentralized Video
Streaming and Delivery Network whereby video viewers are incentivized to share redundant
computing and bandwidth resources to address today’s video streaming challenges. Using the
Ethereum EVM “World Computer” metaphor, the SKY Network can be viewed as the “World Cache”
formed by the memory and bandwidth resources contributed by viewers.

Specifically, viewers around the globe can contribute their devices as “caching nodes” whereby they
form a video delivery mesh network that is responsible for delivering any given video stream to
viewers anywhere around the world optimized for local. The SKY Network can effectively address
the technical challenges discussed in the previous section. First, viewers’ devices are geographically
much closer to each other than to the CDN POPs. This reduces packet round-trip time and
improves the stream delivery quality, and thus addresses the “ last-mile” delivery issue. Second,
with a sufficient amount of caching nodes, most viewers will receive the stream from caching
nodes, which will help streaming sites reduce their CDN bandwidth cost. Third, caching nodes also
reduce round-trip time making foveated and next generation streaming technology practical.

To encourage viewers to contribute their computing and bandwidth resources, we introduce the SKY
token as an incentive mechanism. Caching nodes can earn tokens as they relay video streams to
other viewers. Not only does the SKY Token motivate viewers to join the network as caching nodes,
it also greatly improves the streaming market efficiency by streamlining the video delivery process.
We will discuss later in the paper, but within the SKY Network, advertisers can also directly target
viewers at a lower cost, viewers earn SKY Tokens for their attention and engagement with their
favorite content, and influencers earn SKY Token as gifts directly from viewers. More interestingly,
streaming and content platforms can open up new and incremental revenue opportunities with
SKY.

06

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

The full launch of the SKY protocol introduces a new blockchain and a native token
structure where:

The SKY protocol builds upon the following novel concepts:

●Caching nodes earn tokens for caching and relaying video streams to other viewers
●Viewers optionally earn tokens from advertisers as engagement rewards, and can in turn gift to

favorite influencers and content creators
●Streaming sites and platforms can drive incremental new revenues through sales of premium

goods and services, and deepen user engagement through SKY
●Advertisers fund advertising campaigns with tokens to support influencers, streaming sites and

viewers
●Streaming sites and platforms can offload up to 80% of CDN costs

 Multi-Level BFT: A modified BFT consensus mechanism which allows thousands of nodes to
participate in the consensus process, while still supporting very high transaction
throughput (1,000+ TPS). The core idea is to have a small set of nodes, which forms the validator
committee, to produce a chain of blocks as fast as possible using a PBFT-like process. Then, the
thousands of consensus participants, called the guardians, can finalize the chain generated
by the validator committee at regular checkpoint blocks. The name multi-level BFT consensus
mechanism reflects the fact that the validator/guardian division provides multiple levels of
security guarantee. The validator committee provides the first level of protection — with 10 to 20
validators, the committee can come to consensus quickly. The guardian pool forms the second
line of defense. With thousands of nodes, it is substantially more difficult for attackers to
compromise, and thus provides a much higher level of security. We believe this mechanism
achieves a good balance among transaction throughput, consistency, and level of
decentralization, the three pillars of the so-called “impossible triangle”

Aggregated Signature Gossip Scheme: A naive all-to-all broadcasting of the checkpoint
block hash could work between guardian nodes, but it yields quadratic communication
overhead, and so cannot scale to 1,000+ nodes. Instead we propose an Aggregated Signature
Gossip Scheme which could significantly reduce messaging complexity. Each guardian node
keeps combining the partially aggregated signatures from all its neighbors, and then gossips out
the aggregated signature. This way the signature share of each node can reach other nodes at
exponential speed thanks to the gossip protocol. In addition, the signature aggregation
keeps the size of the node-to-node messages small, and thus further reduces the
communication overhead.

 Resource Oriented Micropayment Pool: An off-chain “ Resource Oriented
Micropayment Pool” that is purpose-built for video streaming. It allows a user to create an
off-chain micropayment pool that any other user can withdraw from using off-chain
transactions, and is double-spend resistant. It is much more flexible compared to off-chain
payment channels. In particular, for the video streaming use case, it allows a viewer to pay for
video content pulled from multiple caching nodes without on-chain transactions. By replacing
on-chain transactions with off-chain payments, the built-in “ Resource Oriented Micropayment
Pool” significantly improves the scalability of the blockchain.

07

SKY Mesh
Delivery Network

Peer-to-peer streaming focuses on timely delivery of audio and video content under strict, near
real-time parameters. Peer-to-peer livestream delivery works best when many people tune in for the
same stream at the same time. High concurrent user count means more peering resources are
available, and thus the peer nodes can pull the stream from each other more effectively. The whole
system capacity increases as more peer nodes become available. Moreover, robustness of the
system is increased in a peer-to-peer network, as nodes do not need to rely on a centralized server
to retrieve content. This is especially important in cases of server failure. In contrast, for centralized
CDN-based delivery, high concurrent users instead place scalability pressures on the CDN servers.

However, the shortcoming of pure peer-to-peer streaming is availability. Peers come and go at
anytime, which makes it difficult to predict the availability of any given peer node. There are also
uncontrollable differences of nodes, such as upload and download capacities. On the other hand, a
CDN service is more reliable and robust, and hence it can serve as a reliable “backup” when the
stream is not available from peer nodes.
Our goal is to achieve maximum CDN bandwidth reduction without sacrificing the
quality-of-service (QoS) which is critical to established streaming platforms such as Netflix, YouTube,
Twitch, Facebook and others. This means whenever possible we want the peer nodes to pull the
stream from each other instead of from the CDN. To achieve this goal, it’s crucial for the peer nodes
to be able to identify neighboring nodes effectively. If a node can identify multiple peers in close
proximity, chances are that it can find peers that can provide the video stream segments much more
consistently. On the contrary, if the identified peers are “further away” in terms of network hops,
nodes might not be able to pull stream from peers consistently and cause degraded user
experience like stuttering, frequent rebuffering, etc.

To address this problem, SKY has designed and is currently implementing a strategy which combines
both a hyper-optimized tracker server and player client-side intelligence. Essentially, the tracker

server provides high level guidance (e.g. a list of candidate peers) for the player client, while the
player client implements a peer filtering algorithm at a finer granularity based on multiple variables
to find the neighboring nodes that can best serve them.

Interestingly, the immutability characteristic also enhances the tolerance to network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To provide byzantine fault tolerance, an honest node needs to be assured that at least
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This
requires each node to send, receive and process O(n) messages, where each message can be a
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple
hundred guardian nodes, unless we select a large T value, which is undesirable since it increases the
block finalization latency.

08

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

Geo-Optimized Tracker Server

server provides high level guidance (e.g. a list of candidate peers) for the player client, while the
player client implements a peer filtering algorithm at a finer granularity based on multiple variables
to find the neighboring nodes that can best serve them.

In order to provide a list of candidate peer nodes to each client, the tracker server records the
location information whenever a peer joins the network, including its IP address,
latitude/longitude, and a number of other performance parameters. With this information the server
can organize the nodes in a spatial database. SKY’s “hyper-optimized” spatial database is
optimized for storing and querying data that represents objects defined in geometric space.
As a peer node joins the network, the server can perform a spatial query to retrieve a list of candi-
date peers that are in the close proximity very quickly and efficiently, see Figure 4. The tracker
servers and the spatial databases can be maintained by video streaming sites that use the SKY
network and/or by community peers for content delivery.

As we mentioned earlier, a peer node might leave the network at anytime. Hence the tracker server
also needs to be aware of which nodes are active. To achieve this, an active peer node needs to
maintain a socket connection with the server and send heartbeat signals consistently. If the
server doesn’t receive a heartbeat for a certain amount of time, it considers that peer node as
having left the network, and updates the spatial database accordingly.

An important distinction is that the “distance” between two peer nodes is measured by the number
of router hops between them rather than the geographical distance. Typically network distance and
geographical distance are highly correlated, but aren’t necessarily equivalent. For example, two
computers could sit next to each other physically, but connect to different ISPs so there might be
many hops between them. Hence, aside from geographical information, the tracker server also
utilizes the connectivity between the IP addresses collected in the past to analyze and select neigh-

Figure 4. Interactions between the tracker servers and player clients

bor candidates. For example, candidates returned by the spatial query can go through another filter
to exclude those that are not connected to the same ISP as the viewer’s.

Interestingly, the immutability characteristic also enhances the tolerance to network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To provide byzantine fault tolerance, an honest node needs to be assured that at least
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This
requires each node to send, receive and process O(n) messages, where each message can be a
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple
hundred guardian nodes, unless we select a large T value, which is undesirable since it increases the
block finalization latency.

09

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

Intelligent Player Client
Each peer node may act both as a viewer, a caching node or both. As the node launches, during
the handshake step, it retrieves a list of candidate peers from the tracker server for the livestream
it’s playing. Then, it performs a speed and availability test to select a subset that has optimized
performance, connectivity and can reliably provide the video stream segments. The client performs
the speed and availability tests regularly during a live stream session and continuously refines its
neighbor list.

To avoid QoS degradation, local buffer management is critical. The client player maintains a local
cache to buffer the downloaded stream data as in Figure 5. If the duration of the cached stream
data is less than a certain threshold, the player checks with the neighboring peers to see if they
have the desired video stream segment. In the event when none of the neighbors has that segment,
the player intelligently falls back to the CDN. To achieve the best QoS possible, the player fetches an
updated candidate list from the tracker server on a regular basis during the stream session.

The first version of the client video player is a web/HTML5 based player which employs the WebRTC
protocol for stream delivery among peers. Deploying web-based players requires minimal effort.
Streaming sites and platforms simply embed the player onto their webpages, and it instantly has
access and “launches” millions of end user nodes in the SKY mesh network. Thus, the deployment of
SKY’s mesh streaming technology is very light-weight and frictionless.

SKY also plans to release desktop and mobile client support. The advantage of a desktop client app
over the web/HTML5 player is that it can run in the background to facilitate video stream relay (with
the consent of the user) even when the end user is not watching any video streams. Further, SKY is
investigating dedicated hardware, IOT devices, SmartTVs and related approaches that are specifical-
ly designed for stream relay and re-broadcast. Such devices can provide potentially better availabil-
ity and bandwidth.

bor candidates. For example, candidates returned by the spatial query can go through another filter
to exclude those that are not connected to the same ISP as the viewer’s.

Figure 5. Player stream data buffer handling

Interestingly, the immutability characteristic also enhances the tolerance to network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To provide byzantine fault tolerance, an honest node needs to be assured that at least
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This
requires each node to send, receive and process O(n) messages, where each message can be a
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple
hundred guardian nodes, unless we select a large T value, which is undesirable since it increases the
block finalization latency.

10

SKY
Blockchain Ledger

The SKY Ledger is a decentralized ledger designed for the video streaming industry. It
powers the SKY token ecosystem which incentives end users to share their redundant bandwidth
and storage resources, and enables them to engage more actively with video platforms and con-
tent creators. To realize these goals, a number of challenges, many of which are unique for video
streaming applications, need to be tackled.

One of such challenges is to support ultra high transaction throughput. Although many block-
chain projects are facing transaction throughput problems, scaling for live video streaming is
different and possibly even more complex. Typically, video segments are a couple of seconds long. To
achieve the finest granularity of a token reward — one micropayment per video segment — even a
live stream with a moderate ten thousand concurrent viewers could generate a couple of thousand
microtransactions per second, which far exceeds the maximum throughput of today’s public chains,
such as Bitcoin and Ethereum. Popular live streams like major esport tournaments can attract more
than one million viewers watching one stream simultaneously, not to mention multiple concurrent
live streams, which could potentially push the required transaction throughput to the range of
millions per second.

A byproduct of the high throughput is rapidly growing storage consumption. Storing the micro-
payment transactions is highly storage demanding. With tens of thousands of transactions
added to the ledger every second, the storage space of an ordinary computer could run out quickly.

Video streaming applications typically require fast consensus. For bandwidth sharing rewards, the
users that contribute redundant bandwidth typically want the payment to be confirmed before
sending the next one. Other use cases, such as virtual gift donations to live stream hosts, also
require short confirmation times to enable to real-time interactions between the hosts and audi-
ence.

Finally, as in any blockchain, security of the ledger is critical. Security is highly correlated with the
level of decentralization. In a Proof-of-Stake (PoS) based consensus mechanism, decentraliza-
tion means an even stake distribution among consensus participants. Ideally, the consensus mecha-
nism should allow thousands of independent nodes, each with similar amounts of stake and
each possessing a local copy of the blockchain, to participate in the block finalization process. To
compromise such a system, a significant amount of independent nodes would need to be controlled
by the attackers, which is difficult to achieve.

To achieve these goals, we have designed our PoS consensus algorithm based on the Byz-
antine Fault Tolerance (BFT) protocols, which offers good guarantees such as consistency (a.k.a.
safety) when more than 2/3 of nodes running the ledger software are honest. However, the tradi-
tional BFT algorithms do not allow a high level of decentralization. They typically incur O(n2) mes-
saging complexity even for the normal (non-faulty proposer) case, where n is the number of nodes
participating in the consensus protocol. When we have thousands of nodes, it will take considerable
amount of time to reach agreement. In this paper, we present a novel multi-level BFT consensus
mechanism that allows mass participation, and still achieves 1000+ TPS throughput with the
transaction confirmation time as short as a few seconds.

Such level of transaction throughput, although already much higher than Bitcoin and Ethe-
reum, is still not sufficient to handle the micropayments for the “pay-per-byte”

granularity. To further increase the throughput, the SKY Ledger provides native support for off-chain
scaling, with a “resource oriented micropayment pool” which further amplifies the supportable
throughput by several order of magnitudes.

We note that the off-chain payment support not only boosts the throughput, but also
decreases the number of the transactions that need to be stored in the blockchain. On top of that,
we introduce the technique of state and block history pruning to further reduce the storage space
requirement. Moreover, we have adopted the microservice architecture for the storage system, which
can adapt to different types of machines and storage backends, be it powerful server clusters run-
ning in data centers, or commodity desktop PCs.

Interestingly, the immutability characteristic also enhances the tolerance to network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To provide byzantine fault tolerance, an honest node needs to be assured that at least
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This
requires each node to send, receive and process O(n) messages, where each message can be a
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple
hundred guardian nodes, unless we select a large T value, which is undesirable since it increases the
block finalization latency.

The SKY Ledger is a decentralized ledger designed for the video streaming industry. It
powers the SKY token ecosystem which incentives end users to share their redundant bandwidth
and storage resources, and enables them to engage more actively with video platforms and con-
tent creators. To realize these goals, a number of challenges, many of which are unique for video
streaming applications, need to be tackled.

One of such challenges is to support ultra high transaction throughput. Although many block-
chain projects are facing transaction throughput problems, scaling for live video streaming is
different and possibly even more complex. Typically, video segments are a couple of seconds long. To
achieve the finest granularity of a token reward — one micropayment per video segment — even a
live stream with a moderate ten thousand concurrent viewers could generate a couple of thousand
microtransactions per second, which far exceeds the maximum throughput of today’s public chains,
such as Bitcoin and Ethereum. Popular live streams like major esport tournaments can attract more
than one million viewers watching one stream simultaneously, not to mention multiple concurrent
live streams, which could potentially push the required transaction throughput to the range of
millions per second.

A byproduct of the high throughput is rapidly growing storage consumption. Storing the micro-
payment transactions is highly storage demanding. With tens of thousands of transactions
added to the ledger every second, the storage space of an ordinary computer could run out quickly.

Video streaming applications typically require fast consensus. For bandwidth sharing rewards, the
users that contribute redundant bandwidth typically want the payment to be confirmed before
sending the next one. Other use cases, such as virtual gift donations to live stream hosts, also
require short confirmation times to enable to real-time interactions between the hosts and audi-
ence.

11

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

Finally, as in any blockchain, security of the ledger is critical. Security is highly correlated with the
level of decentralization. In a Proof-of-Stake (PoS) based consensus mechanism, decentraliza-
tion means an even stake distribution among consensus participants. Ideally, the consensus mecha-
nism should allow thousands of independent nodes, each with similar amounts of stake and
each possessing a local copy of the blockchain, to participate in the block finalization process. To
compromise such a system, a significant amount of independent nodes would need to be controlled
by the attackers, which is difficult to achieve.

To achieve these goals, we have designed our PoS consensus algorithm based on the Byz-
antine Fault Tolerance (BFT) protocols, which offers good guarantees such as consistency (a.k.a.
safety) when more than 2/3 of nodes running the ledger software are honest. However, the tradi-
tional BFT algorithms do not allow a high level of decentralization. They typically incur O(n2) mes-
saging complexity even for the normal (non-faulty proposer) case, where n is the number of nodes
participating in the consensus protocol. When we have thousands of nodes, it will take considerable
amount of time to reach agreement. In this paper, we present a novel multi-level BFT consensus
mechanism that allows mass participation, and still achieves 1000+ TPS throughput with the
transaction confirmation time as short as a few seconds.

Such level of transaction throughput, although already much higher than Bitcoin and Ethe-
reum, is still not sufficient to handle the micropayments for the “pay-per-byte”

granularity. To further increase the throughput, the SKY Ledger provides native support for off-chain
scaling, with a “resource oriented micropayment pool” which further amplifies the supportable
throughput by several order of magnitudes.

We note that the off-chain payment support not only boosts the throughput, but also
decreases the number of the transactions that need to be stored in the blockchain. On top of that,
we introduce the technique of state and block history pruning to further reduce the storage space
requirement. Moreover, we have adopted the microservice architecture for the storage system, which
can adapt to different types of machines and storage backends, be it powerful server clusters run-
ning in data centers, or commodity desktop PCs.

The SKY Ledger is built on a novel multi-level BFT consensus mechanism11 which allows thou-
sands of nodes to participate in the consensus process, while still supporting very high transaction
throughput (1000+ TPS).

The core idea is to have a small set of nodes, which forms the validator committee, produce a chain
of blocks as fast as possible using a PBFT-like12 process. With a sufficient number of validators (e.g.

The Consensus Mechanism
Multi-Level BFT

10 to 20), the validator committee can produce blocks at a fast speed, and still retain a high degree
of difficulty to prevent an adversary from compromising the integrity of the blockchain. Hence, it is
reasonable to expect that there is a very high probability the validators will produce a chain of
blocks without forks. Then, the thousands of consensus participants, called guardians, can finalize
the chain generated by the validator committee. Here “finalization” means to convince each honest
guardian that more than 2/3 of all the other guardians see the same chain of blocks.

Since there are many more guardians than validators, it could a take longer time for the guardians to
reach consensus than the validator committee. In order for the guardians to finalize the chain of
blocks at the same speed that the validator committee produces new blocks, the guardian nodes
can process the blocks at a much coarser grain. To be more specific, they only need to agree on the
hash of the checkpoint blocks, i.e. blocks whose height are a multiple of some integer r (e.g. r =
100). This “leapfrogging” finalization strategy leverages the immutability characteristic of the block-
chain data structure — as long as two guardian nodes agree on the hash of a block, with over-
whelming probability, they will have exactly the same copy of the entire blockchain up to that block.
Finalizing only the checkpoint blocks gives sufficient time for the thousands of guardians to reach
consensus. Hence, with this strategy, the two independent processes, i.e., block production and
finalization, can advance at the same pace.

Under the normal condition, finalizing a checkpoint block is similar to the "commit" step of the
celebrated PBFT algorithm since each guardian has already stored the checkpoint block locally.
Moreover, the checkpoint block has been signed by the validator committee, and hence it is highly
likely that all the honest guardians have the same checkpoint. Thus, we only need a protocol for the
honest guardians to confirm that indeed more than 2/3 of all guardians have the same checkpoint
hash.

To implement this protocol, a naive all-to-all broadcasting of the checkpoint block hash could work,
but it yields quadratic communication overhead, and so cannot scale to large numbers of guardians.
Instead we propose an aggregated signature gossip scheme which could significantly reduce
messaging complexity. The core idea is rather simple. Each guardian node keeps combining the
partially aggregated signatures from all its neighbors, and then gossips out the aggregated signa-
ture, along with a compact bitmap which encodes the list of signers. This way the signature share of
each node can reach other nodes at exponential speed utilizing the gossip protocol. Within O(log n)
iterations, with high probability, all the honest guardian nodes should have a string which aggre-
gates the signatures from all other honest nodes if there is no network partition. In addition, the
signature aggregation keeps the size of the node-to-node messages small, and thus further reduces
the communication overhead.

As mentioned above, the validator committee is comprised of a limited set of validator nodes, typi-
cally in the range of ten to twenty. They can be selected through an election process, or a random-
ized process, and may be subject to rotation to improve security. To be eligible to join the validator
committee, a node needs to lock up a certain amount of stake for a period of time, which can be
slashed if malicious behavior is detected. The blocks that the committee reaches consensus on are

called settled blocks, and the process to settle the blocks is called the block settlement process.

The guardian pool is a superset of the validator committee, i.e. a validator is also a guardian. The
pool contains a large number of nodes, which could be in the range of thousands. With a certain
amount of tokens locked up for a period of time, any node in the network can instantly become a
guardian. The guardians download and examine the chain of blocks generated by the validator
committee and try to reach consensus on the the checkpoints with the above described
“leapfrogging” approach. By allowing mass participation, we can greatly enhance the transaction
security. The blocks that the guardian pool has reached consensus on are called finalized blocks, and
the process to finalize the blocks is called the block finalization process.

The name multi-level BFT consensus mechanism reflects the fact that the validator/guardian division
provides multiple levels of security guarantee. The validator committee provides the first level of
protection — with 10 to 20 validators, the committee can come to consensus quickly. Yet it is resis-
tant enough to attacks — in fact, it already provides a similar level of security compared to the DPoS
mechanism if each validator nodes is run by an independent entity. Thus, a transaction can already
be considered safe when it has been included in a settled block, especially for low stake transac-
tions. The guardian pool forms the second line of defense. With thousands of nodes, it is sub-
stantially more difficult for attackers to compromise blockchain integrity, and thus provides a
much higher level of security. In the unlikely event that the validator committee is fully controlled by
attackers, the guardians can re-elect the validators, and the blockchain can restart, advancing from
the most recent block finalized by the guardians. A transaction is considered irreversible when it is
included in a finalized block. We believe this mechanism achieves a good balance among
transaction throughput, consistency, and level of decentralization, the three corners of the
so-called “impossible triangle”
The multi-level security scheme suits video streaming applications well. For streaming plat-
forms, most of the transactions are micropayments (e.g. payment for peer bandwidth, virtual gifts to
hosts, etc.) which typically have low value, but require fast confirmation. For such low stake pay-
ments, the users only need to wait for block settlement, which is very fast, in a matter of seconds.
For high stake transfers, the user can wait longer until the block

containing the transaction is finalized, which could take slightly longer time, but is still in the range
of minutes.

Interestingly, the immutability characteristic also enhances the tolerance to network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To provide byzantine fault tolerance, an honest node needs to be assured that at least
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This
requires each node to send, receive and process O(n) messages, where each message can be a
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple
hundred guardian nodes, unless we select a large T value, which is undesirable since it increases the
block finalization latency.

12

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

The SKY Ledger is built on a novel multi-level BFT consensus mechanism11 which allows thou-
sands of nodes to participate in the consensus process, while still supporting very high transaction
throughput (1000+ TPS).

The core idea is to have a small set of nodes, which forms the validator committee, produce a chain
of blocks as fast as possible using a PBFT-like12 process. With a sufficient number of validators (e.g.

10 to 20), the validator committee can produce blocks at a fast speed, and still retain a high degree
of difficulty to prevent an adversary from compromising the integrity of the blockchain. Hence, it is
reasonable to expect that there is a very high probability the validators will produce a chain of
blocks without forks. Then, the thousands of consensus participants, called guardians, can finalize
the chain generated by the validator committee. Here “finalization” means to convince each honest
guardian that more than 2/3 of all the other guardians see the same chain of blocks.

Since there are many more guardians than validators, it could a take longer time for the guardians to
reach consensus than the validator committee. In order for the guardians to finalize the chain of
blocks at the same speed that the validator committee produces new blocks, the guardian nodes
can process the blocks at a much coarser grain. To be more specific, they only need to agree on the
hash of the checkpoint blocks, i.e. blocks whose height are a multiple of some integer r (e.g. r =
100). This “leapfrogging” finalization strategy leverages the immutability characteristic of the block-
chain data structure — as long as two guardian nodes agree on the hash of a block, with over-
whelming probability, they will have exactly the same copy of the entire blockchain up to that block.
Finalizing only the checkpoint blocks gives sufficient time for the thousands of guardians to reach
consensus. Hence, with this strategy, the two independent processes, i.e., block production and
finalization, can advance at the same pace.

Under the normal condition, finalizing a checkpoint block is similar to the "commit" step of the
celebrated PBFT algorithm since each guardian has already stored the checkpoint block locally.
Moreover, the checkpoint block has been signed by the validator committee, and hence it is highly
likely that all the honest guardians have the same checkpoint. Thus, we only need a protocol for the
honest guardians to confirm that indeed more than 2/3 of all guardians have the same checkpoint
hash.

To implement this protocol, a naive all-to-all broadcasting of the checkpoint block hash could work,
but it yields quadratic communication overhead, and so cannot scale to large numbers of guardians.
Instead we propose an aggregated signature gossip scheme which could significantly reduce
messaging complexity. The core idea is rather simple. Each guardian node keeps combining the
partially aggregated signatures from all its neighbors, and then gossips out the aggregated signa-
ture, along with a compact bitmap which encodes the list of signers. This way the signature share of
each node can reach other nodes at exponential speed utilizing the gossip protocol. Within O(log n)
iterations, with high probability, all the honest guardian nodes should have a string which aggre-
gates the signatures from all other honest nodes if there is no network partition. In addition, the
signature aggregation keeps the size of the node-to-node messages small, and thus further reduces
the communication overhead.

As mentioned above, the validator committee is comprised of a limited set of validator nodes, typi-
cally in the range of ten to twenty. They can be selected through an election process, or a random-
ized process, and may be subject to rotation to improve security. To be eligible to join the validator
committee, a node needs to lock up a certain amount of stake for a period of time, which can be
slashed if malicious behavior is detected. The blocks that the committee reaches consensus on are

called settled blocks, and the process to settle the blocks is called the block settlement process.

The guardian pool is a superset of the validator committee, i.e. a validator is also a guardian. The
pool contains a large number of nodes, which could be in the range of thousands. With a certain
amount of tokens locked up for a period of time, any node in the network can instantly become a
guardian. The guardians download and examine the chain of blocks generated by the validator
committee and try to reach consensus on the the checkpoints with the above described
“leapfrogging” approach. By allowing mass participation, we can greatly enhance the transaction
security. The blocks that the guardian pool has reached consensus on are called finalized blocks, and
the process to finalize the blocks is called the block finalization process.

The name multi-level BFT consensus mechanism reflects the fact that the validator/guardian division
provides multiple levels of security guarantee. The validator committee provides the first level of
protection — with 10 to 20 validators, the committee can come to consensus quickly. Yet it is resis-
tant enough to attacks — in fact, it already provides a similar level of security compared to the DPoS
mechanism if each validator nodes is run by an independent entity. Thus, a transaction can already
be considered safe when it has been included in a settled block, especially for low stake transac-
tions. The guardian pool forms the second line of defense. With thousands of nodes, it is sub-
stantially more difficult for attackers to compromise blockchain integrity, and thus provides a
much higher level of security. In the unlikely event that the validator committee is fully controlled by
attackers, the guardians can re-elect the validators, and the blockchain can restart, advancing from
the most recent block finalized by the guardians. A transaction is considered irreversible when it is
included in a finalized block. We believe this mechanism achieves a good balance among
transaction throughput, consistency, and level of decentralization, the three corners of the
so-called “impossible triangle”
The multi-level security scheme suits video streaming applications well. For streaming plat-
forms, most of the transactions are micropayments (e.g. payment for peer bandwidth, virtual gifts to
hosts, etc.) which typically have low value, but require fast confirmation. For such low stake pay-
ments, the users only need to wait for block settlement, which is very fast, in a matter of seconds.
For high stake transfers, the user can wait longer until the block

containing the transaction is finalized, which could take slightly longer time, but is still in the range
of minutes.

Interestingly, the immutability characteristic also enhances the tolerance to network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To provide byzantine fault tolerance, an honest node needs to be assured that at least
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This
requires each node to send, receive and process O(n) messages, where each message can be a
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple
hundred guardian nodes, unless we select a large T value, which is undesirable since it increases the
block finalization latency.

13

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

The SKY Ledger is built on a novel multi-level BFT consensus mechanism11 which allows thou-
sands of nodes to participate in the consensus process, while still supporting very high transaction
throughput (1000+ TPS).

The core idea is to have a small set of nodes, which forms the validator committee, produce a chain
of blocks as fast as possible using a PBFT-like12 process. With a sufficient number of validators (e.g.

System Model

10 to 20), the validator committee can produce blocks at a fast speed, and still retain a high degree
of difficulty to prevent an adversary from compromising the integrity of the blockchain. Hence, it is
reasonable to expect that there is a very high probability the validators will produce a chain of
blocks without forks. Then, the thousands of consensus participants, called guardians, can finalize
the chain generated by the validator committee. Here “finalization” means to convince each honest
guardian that more than 2/3 of all the other guardians see the same chain of blocks.

Since there are many more guardians than validators, it could a take longer time for the guardians to
reach consensus than the validator committee. In order for the guardians to finalize the chain of
blocks at the same speed that the validator committee produces new blocks, the guardian nodes
can process the blocks at a much coarser grain. To be more specific, they only need to agree on the
hash of the checkpoint blocks, i.e. blocks whose height are a multiple of some integer r (e.g. r =
100). This “leapfrogging” finalization strategy leverages the immutability characteristic of the block-
chain data structure — as long as two guardian nodes agree on the hash of a block, with over-
whelming probability, they will have exactly the same copy of the entire blockchain up to that block.
Finalizing only the checkpoint blocks gives sufficient time for the thousands of guardians to reach
consensus. Hence, with this strategy, the two independent processes, i.e., block production and
finalization, can advance at the same pace.

Under the normal condition, finalizing a checkpoint block is similar to the "commit" step of the
celebrated PBFT algorithm since each guardian has already stored the checkpoint block locally.
Moreover, the checkpoint block has been signed by the validator committee, and hence it is highly
likely that all the honest guardians have the same checkpoint. Thus, we only need a protocol for the
honest guardians to confirm that indeed more than 2/3 of all guardians have the same checkpoint
hash.

To implement this protocol, a naive all-to-all broadcasting of the checkpoint block hash could work,
but it yields quadratic communication overhead, and so cannot scale to large numbers of guardians.
Instead we propose an aggregated signature gossip scheme which could significantly reduce
messaging complexity. The core idea is rather simple. Each guardian node keeps combining the
partially aggregated signatures from all its neighbors, and then gossips out the aggregated signa-
ture, along with a compact bitmap which encodes the list of signers. This way the signature share of
each node can reach other nodes at exponential speed utilizing the gossip protocol. Within O(log n)
iterations, with high probability, all the honest guardian nodes should have a string which aggre-
gates the signatures from all other honest nodes if there is no network partition. In addition, the
signature aggregation keeps the size of the node-to-node messages small, and thus further reduces
the communication overhead.

As mentioned above, the validator committee is comprised of a limited set of validator nodes, typi-
cally in the range of ten to twenty. They can be selected through an election process, or a random-
ized process, and may be subject to rotation to improve security. To be eligible to join the validator
committee, a node needs to lock up a certain amount of stake for a period of time, which can be
slashed if malicious behavior is detected. The blocks that the committee reaches consensus on are

called settled blocks, and the process to settle the blocks is called the block settlement process.

The guardian pool is a superset of the validator committee, i.e. a validator is also a guardian. The
pool contains a large number of nodes, which could be in the range of thousands. With a certain
amount of tokens locked up for a period of time, any node in the network can instantly become a
guardian. The guardians download and examine the chain of blocks generated by the validator
committee and try to reach consensus on the the checkpoints with the above described
“leapfrogging” approach. By allowing mass participation, we can greatly enhance the transaction
security. The blocks that the guardian pool has reached consensus on are called finalized blocks, and
the process to finalize the blocks is called the block finalization process.

The name multi-level BFT consensus mechanism reflects the fact that the validator/guardian division
provides multiple levels of security guarantee. The validator committee provides the first level of
protection — with 10 to 20 validators, the committee can come to consensus quickly. Yet it is resis-
tant enough to attacks — in fact, it already provides a similar level of security compared to the DPoS
mechanism if each validator nodes is run by an independent entity. Thus, a transaction can already
be considered safe when it has been included in a settled block, especially for low stake transac-
tions. The guardian pool forms the second line of defense. With thousands of nodes, it is sub-
stantially more difficult for attackers to compromise blockchain integrity, and thus provides a
much higher level of security. In the unlikely event that the validator committee is fully controlled by
attackers, the guardians can re-elect the validators, and the blockchain can restart, advancing from
the most recent block finalized by the guardians. A transaction is considered irreversible when it is
included in a finalized block. We believe this mechanism achieves a good balance among
transaction throughput, consistency, and level of decentralization, the three corners of the
so-called “impossible triangle”
The multi-level security scheme suits video streaming applications well. For streaming plat-
forms, most of the transactions are micropayments (e.g. payment for peer bandwidth, virtual gifts to
hosts, etc.) which typically have low value, but require fast confirmation. For such low stake pay-
ments, the users only need to wait for block settlement, which is very fast, in a matter of seconds.
For high stake transfers, the user can wait longer until the block

containing the transaction is finalized, which could take slightly longer time, but is still in the range
of minutes.

Before diving into the details of the block settlement and finalization process, we first list our
assumptions of the system. For ease of discussion, without loss of generality, below we assume
each node (be it a validator or a guardian) has the same amount of stake. Extending the algorithms
to the general case where different nodes have different amount of stake is straightforward.

Validator committee failure model: There are m validator nodes in total. Most of the time, at most

one-third of them are byzantine nodes. They might be fully controlled by attackers, but this happens
only rarely. We also assume that between any pair of validator nodes there is a direct message
channel (e.g. a direct TCP connection).

Guardian pool failure model: There are n guardian nodes in total. At any moment, at most one-third
of them are byzantine nodes. We do not assume a direct message channel between any two guard-
ians. Messages between them might need to be routed through other nodes, some of which could
be byzantine nodes.

Timing model: We assume the “weak synchrony” model. To be more specific, the network can be
asynchronous, or even partitioned for a bounded period of time. Between the asynchronous periods
there are sufficiently long periods of time where all message transmissions between two honest
nodes arrive within a known time bound △ . As we will discuss later in the paper, during the asyn-
chronous period, the ledger simply stops producing new blocks. It will never produce conflicting
blocks even with network partition. During synchronous phases, block production will naturally
resume, and eventual liveness can be achieved.

Attacker model: We assume powerful attackers. They can corrupt a large number of targeted nodes,
but no more than one-third of all the guardians simultaneously. They can manipulate the network at
a large scale, and can even partition the network for a bounded period of time. Yet they are compu-
tationally bounded. They cannot forge fake signatures, and cannot invert cryptographic hashes.

Interestingly, the immutability characteristic also enhances the tolerance to network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To provide byzantine fault tolerance, an honest node needs to be assured that at least
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This
requires each node to send, receive and process O(n) messages, where each message can be a
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple
hundred guardian nodes, unless we select a large T value, which is undesirable since it increases the
block finalization latency.

14

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

Before diving into the details of the block settlement and finalization process, we first list our
assumptions of the system. For ease of discussion, without loss of generality, below we assume
each node (be it a validator or a guardian) has the same amount of stake. Extending the algorithms
to the general case where different nodes have different amount of stake is straightforward.

Validator committee failure model: There are m validator nodes in total. Most of the time, at most

one-third of them are byzantine nodes. They might be fully controlled by attackers, but this happens
only rarely. We also assume that between any pair of validator nodes there is a direct message
channel (e.g. a direct TCP connection).

Guardian pool failure model: There are n guardian nodes in total. At any moment, at most one-third
of them are byzantine nodes. We do not assume a direct message channel between any two guard-
ians. Messages between them might need to be routed through other nodes, some of which could
be byzantine nodes.

Timing model: We assume the “weak synchrony” model. To be more specific, the network can be
asynchronous, or even partitioned for a bounded period of time. Between the asynchronous periods
there are sufficiently long periods of time where all message transmissions between two honest
nodes arrive within a known time bound △ . As we will discuss later in the paper, during the asyn-
chronous period, the ledger simply stops producing new blocks. It will never produce conflicting
blocks even with network partition. During synchronous phases, block production will naturally
resume, and eventual liveness can be achieved.

Attacker model: We assume powerful attackers. They can corrupt a large number of targeted nodes,
but no more than one-third of all the guardians simultaneously. They can manipulate the network at
a large scale, and can even partition the network for a bounded period of time. Yet they are compu-
tationally bounded. They cannot forge fake signatures, and cannot invert cryptographic hashes.

Block settlement is the process in which the validator committee reaches agreement and produces a
chain of blocks for the guardian pool to finalize. Inspired by recent Proof-of-Stake research works
including Tendermint13, Casper FFG14, and Hot-Stuff15, we have designed and implemented the
block settlement algorithm described below. It employs a rotating block proposer strategy where
the validators take turns to propose new blocks. Then, the committee votes on the blocks to
determine their order using a protocol similar to Casper FFG and Hot-Stuff.

The validators rotate in a round robin fashion to play the role of block proposer, which is responsible
for proposing the next block for the validator committee to vote on. To enable the round robin
rotation, each proposer maintains a local logical clock called epoch. Assuming there are m valida-
tors, during epoch t, the validator with index (t mod m) is elected as the proposer for that epoch. We
note it is important that:

1) The epoch t should not be stalled so the liveness of the proposer rotation is
guaranteed; and
2) The epoch t of different validators should be mostly in sync, i.e. most of the time all the
validators have the same t value, so they can agree on which node should produce the next
block.

The Block Settlement Process

Block Proposal

Interestingly, the immutability characteristic also enhances the tolerance to network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To provide byzantine fault tolerance, an honest node needs to be assured that at least
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This
requires each node to send, receive and process O(n) messages, where each message can be a
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple
hundred guardian nodes, unless we select a large T value, which is undesirable since it increases the
block finalization latency.

15

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

Below is our protocol for proposer election and block proposal.

The protocol defines a message EpochChange(t + 1), which can be viewed as a synchronization
message passed among the validators to assist them to advance to the next epoch t + 1 together.
Essentially, a validator broadcasts message EpochChange(t + 1) to all other validators if any
of the following conditions is met:

Eventual Progression: All the honest nodes will eventually enter epoch t + 1. In the worst case, all
the honest nodes (at least 2m/3 + 1 nodes) reach timeout and broadcast the Epoch-
Change(t+1) messages. Under the timing model assumption, all these messages will be delivered

On the other hand, the validator enters epoch t + 1 when it has received 2m/3
EpochChange(t+1) messages from other nodes.

1) the node has proposed or voted for a block in epoch t, or
2) the node has received m/3 + 1 EpochChange(t + 1) messages from other validators, or
3) the node timed out for epoch t (the timeout is set to 4 △).

Algorithm 1. The round robin block proposal protocol

Here we show that this protocol meets the above two requirements.

Interestingly, the immutability characteristic also enhances the tolerance to network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To provide byzantine fault tolerance, an honest node needs to be assured that at least
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This
requires each node to send, receive and process O(n) messages, where each message can be a
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple
hundred guardian nodes, unless we select a large T value, which is undesirable since it increases the
block finalization latency.

16

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

The protocol to settle proposed blocks involves a PBFT-based voting procedure among all valida-
tors, similar to Casper FFG and Hot-Stuff. In the SKY Ledger blockchain, the header of each block
contains a hash pointer to its parent block (i.e. the previous block in the chain), similar to Bitcoin and
Ethereum. Two blocks are conflicting if neither block is an ancestor of the other. If there are multiple,
conflicting block proposals for the same epoch, an honest validator keeps all of them until one
becomes settled, and then it discards all conflicting blocks.

The block settlement protocol operates epoch by epoch. The proposer for the current epoch sends
to all validators a block proposal. A validator reacts by broadcasting a vote for the block. All messag-
es are signed by their senders.

The header of the proposed block might carry a commit-certificate, which consists of at least (2m/3
+ 1) signed votes for its parent block. We note that under the assumption that no more than m/3
validators are faulty, at most one block per height can obtain a commit-certificate. A commit-certifi-
cate for a block indicates this block and all its predecessors are committed. The proposed block may
carry no commit-certificate, if its parent block did not get ≥ 2m/3 + 1 signed votes.

For the validators that are not the current proposer, their job is to vote on the proposed blocks.
Once a validator receives the new block, it broadcasts a signed vote to all validators, so it can

be collected by the proposer of the next epoch to form the commit-certificate. If two con-
secutive blocks A and B both receive a commit-certificate, then the parent block A and all its prede-

Block Consensus Among Validators

within time △ after being sent out. Thus each honest node will receive at least 2m/3 Epoch-
Change(t + 1) messages, and it then enters epoch t + 1.

Epoch Synchrony: Intuitively, this means the epochs of all the honest nodes “move together” More
precisely, we claim that the time any two honest nodes enter epoch t + 1 differ by at most most 2 △
. To prove this, we note that since there are at mostf faulty nodes, for the first honest node to enter
epoch t + 1, at least m/3 other honest nodes must have broadcasted the EpochChange(t + 1)
messages. This honest node then also broadcasts an EpochChange(t + 1) message following the
protocol. After at most △ , any honest node should have received at least m/3 + 1 Epoch-
Change(t + 1) messages, which triggers them to also broadcast the EpochChange(t + 1) mes-
sage. After △ , all the honest nodes receive 2m/3 EpochChange(t + 1) messages and enter epoch t
+ 1. Thus, at most 2 △ after the first honest node enters epoch t + 1, the last honest node will enters
the same epoch.

In practice, when the network latency is small enough, all the honest nodes should enter epoch t + 1
at almost the same time. As a result, they can agree on who is the next proposer. Also we note that
for the actual implementation, the EpochChange(t + 1) messages can be combined with other
types of messages (e.g. block votes) to improve the efficiency. So that in the normal case (no pro-
poser failure), no additional synchronization overhead is added to the system for epoch changes.

Interestingly, the immutability characteristic also enhances the tolerance to network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To provide byzantine fault tolerance, an honest node needs to be assured that at least
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This
requires each node to send, receive and process O(n) messages, where each message can be a
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple
hundred guardian nodes, unless we select a large T value, which is undesirable since it increases the
block finalization latency.

17

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

Safety: Safety means all honest validators agree on the same chain of blocks. More precisely, if one
honest validator accepts a block A, then any future blocks accepted by other honest validators will
appear in a chain of blocks that already contains A. The argument for safety is similar to Casper FFG
and Hot-Stuff and is omitted here. We just want to point out that safety stems from the requirement
that honest nodes never vote for a block that conflicts with a settled block.

Liveness: Liveness means the validator committee always makes progress, i.e., always able to pro-
duce and agree on new blocks. Here we show that under our timing model, during the synchronous

Analysis

cessors are considered settled. To ensure safety, we require that honest nodes never vote for a block
that conflicts with a settled block. When there are forks (either due to faulty proposer or asynchro-
ny), the honest nodes should vote for the blocks on the longest fork.

The figure below illustrates the block settlement process. Assume that the proposer for height 101 is
faulty, and it proposed two conflicting blocks X101 and Y101, which leads to two branches. Assum-
ing neither block X101 nor Y101 gets ≥ 2m/3 + 1 votes, then, neither the header of X102 nor Y102
contains the commit-certificate (denoted by nil in the figure). However, at some point branch X
grows faster, and two consecutive blocks X102 and X103 both obtain ≥ 2m/3 + 1 votes. After that
the upper branch X up to block X102 is considered settled. And the lower branch Y can be discard-
ed.

The above example also illustrates one advantage of our implementation compared to other PBFT
based protocols like Tendermint — a block that does not receive a commit-certificate can also be
included in the settled chain, as long as one of its successor blocks is settled. For instance, block
X101 in the example did not get a commit-certificate, but after block X102 is settled, it is also
considered settled. This reduces the waste of computation power and helps increase the transaction
throughput.

Figure 6. The block settlement process

Interestingly, the immutability characteristic also enhances the tolerance to network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To provide byzantine fault tolerance, an honest node needs to be assured that at least
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This
requires each node to send, receive and process O(n) messages, where each message can be a
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple
hundred guardian nodes, unless we select a large T value, which is undesirable since it increases the
block finalization latency.

18

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

In this section, we will discuss the “leapfrogging” block finalization process in detail. As
mentioned above, the guardians only need to reach consensus on the hashes of the check-
point blocks, which are the blocks whose heights are multiple of of some integer r (e.g. r = 100).

To see why it is sufficient to finalize just the checkpoint blocks, we note that the transaction execu-
tion engine of the blockchain software can be viewed as a “deterministic state machine”, whereas a
transaction can be viewed as a deterministic state transfer function. If two nodes run the same state
machine, then from an identical initial state, after executing the same sequence of transactions, they
will reach an identical end state. Note that this is true even when some of the transactions are
invalid, as long as those transactions can be detected by the state machine and skipped. For exam-
ple, assume there is a transaction that tries to spend more tokens than the balance of the source
account. The state machine can simply skip this transaction after performing a sanity check. This
way the “bad” transactions have no impact on the state.

In the context of blockchain, if all the honest nodes have the same copy of the blockchain, they can
be ensured to arrive at the same end state after processing all the blocks in order. But with one
caveat — the blockchain might contain a huge amount of data. How can two honest nodes compare
whether they have the same chain of blocks efficiently?

Here the immutability characteristic of the blockchain data structure becomes highly relevant. Since
the header of each block contains the hash of the previous block, as long as two nodes have the
same hash of the checkpoint block, with overwhelming probability, they should have an identical
chain of blocks from genesis up to the checkpoint. Of course each guardian node needs to verify the
integrity of the blockchain. In particular, the block hash embedded in each block header is actually
the hash of the previous block. We note that a node can perform the integrity checks on its own, no
communication with other nodes is required.

periods, the committee can always achieve the liveness goal. First, in the “ Block Proposal” section,
we have proved that the epoch can always advance, and all the honest

validators march forward together. In an epoch where the proposer is an honest validator, it will
propose a new block. For the block settlement process, liveness depends on that during the syn-
chronous periods, there are infinitely many epochs where two proposers in a row are honest, and
wait sufficiently long to form the commit-certificate. We note this is guaranteed to happen infinitely
often with the round robin rotation, since at least 2/3 of the validators are honest.

Transaction throughput: With ten to twenty validators, the committee can produce and settle the
chain of blocks rather quickly. Average block production and settlement time is in the order of
seconds, and this leads to high throughput of as much as 1000+ transactions per second.

The Block Finalization Process

Interestingly, the immutability characteristic also enhances the tolerance to network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To provide byzantine fault tolerance, an honest node needs to be assured that at least
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This
requires each node to send, receive and process O(n) messages, where each message can be a
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple
hundred guardian nodes, unless we select a large T value, which is undesirable since it increases the
block finalization latency.

19

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

To reduce the communication complexity and scale to thousands of guardians, we have
designed an aggregated signature gossip scheme inspired by the BLS signature aggregation tech-
nique16 and the gossip protocol. The scheme requires each guardian node to process a much
smaller number of messages to reach consensus, which is much more practical. Below are the steps
of the aggregated signature gossip protocol. It uses the BLS algorithm for signature aggregation.

Scaling to Thousands of Guardians

Interestingly, the immutability characteristic also enhances the tolerance to network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To provide byzantine fault tolerance, an honest node needs to be assured that at least
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This
requires each node to send, receive and process O(n) messages, where each message can be a
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple
hundred guardian nodes, unless we select a large T value, which is undesirable since it increases the
block finalization latency.

Algorithm 2. The aggregated signature gossip protocol

Interestingly, the immutability characteristic also enhances the tolerance to network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To provide byzantine fault tolerance, an honest node needs to be assured that at least
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This
requires each node to send, receive and process O(n) messages, where each message can be a
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple
hundred guardian nodes, unless we select a large T value, which is undesirable since it increases the
block finalization latency.

20

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

The core idea is rather simple. Each guardian node keeps combining the partially aggregated signa-
tures from its neighbors, and then gossips this newly aggregated signature out. This way the signa-
ture share of each node can reach other nodes at exponential speed by using the gossip protocol. In
addition, the signature aggregation keeps the size of the messages small, and thus reduces the
communication overhead.

In the above diagram, i is the index of the current guardian node. The first line of the protocol uses
function SignBLS() to generate its initial aggregated signature σi . It essentially signs a message
which is the concatenation of the height and hash of the checkpoint block using the BLS signature
algorithm, with multiplicative cyclic group G of prime order p, and generator g:

In the first formula above, function H : G × {0 , 1}* → G is a hash function that takes both the
public key pki and the message as input. This is to prevent the rogue public-key attack17.

The protocol also uses function InitSignerVector() to initialize the signer vector ci , which is an n
dimensional integer vector whosejth entry represents how many times thejth guardian has signed
the aggregated signature. After initialization, its ith entry is set to 1, and the remaining entries are
all set to 0.
After initialization, the guardian enters a loop. In each iteration, the guardian first sends out its
current aggregated signature σi and the signer vector ci to all its neighbors. Then, if it has not
considered the checkpoint as finalized, it waits for the signature and signer vector from all its neigh-
bors, or waits until timeout. Upon receiving all the signature and signer vectors, it checks the validity
of (σj , cj) using the BLS aggregated signature verification algorithm.

where e : G × G → GT is a bilinear mapping function from G × G to GT, another multiplicative cyclic
group also of prime order p. All the invalid signatures and their associated signer vectors are
discarded for the next aggregation step. It is worth pointing out that besides heightcp, hashcp, the
above check also requires the public key pku of the relevant guardians as input. All this information

Interestingly, the immutability characteristic also enhances the tolerance to network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To provide byzantine fault tolerance, an honest node needs to be assured that at least
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This
requires each node to send, receive and process O(n) messages, where each message can be a
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple
hundred guardian nodes, unless we select a large T value, which is undesirable since it increases the
block finalization latency.

21

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

should be available locally, since when a guardian locks up its stake, its public key should be
attached to the stake locking transaction which has already been written into the blockchain.
Hence, no communication with other nodes is necessary to retrieve these inputs.

The aggregation step aggregates the BLS signature σj, and updates the signer vector cj . Note that
for the vector update, we take mod p for each entry. We can do this because e (hu, pku)
∈ GT , which is a multiplicative cyclic group of prime order p. This guarantees that the entries of
vector cj can always be represented with a limited number of bits.

Here function I: {true, false} → {1, 0} maps a true condition to 1, and false to 0. Hence the sum-
mation counts how many unique signers have contributed to the aggregated signature. If the signa-
ture is signed by more than two-third of all the guardians, the guardian considers the checkpoint to
be finalized.

If the checkpoint is finalized, the aggregated signature will be gossipped out in the next iteration.
Hence within O(log(n)) iterations all the honest guardians will have an aggregated signature that is
signed by more than two-third of all the guardians if the network is not partitioned.
The loop has L iterations, L should be in the order of O(log(n)) to allow the signature to propagate
through the network.

Aggregated Signature Gossip Correctness: To prove the correctness of the aggregated signa-
ture gossip protocol, we need to prove two claims. First, if an aggregated signature is correctly
formed by honest nodes according to Algorithm 2, it can pass the check given by Formula (4).
Second, the aggregated signature is secure against forgery. Stated more formally, forging a fake
aggregated signature in the context of Algorithm 2 means to find σ ∈ G and integers c1, c2, … cn
which satisfy the equation below

The algorithm then calculates the number of unique signers of the aggregated signature.

Analysis

Interestingly, the immutability characteristic also enhances the tolerance to network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To provide byzantine fault tolerance, an honest node needs to be assured that at least
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This
requires each node to send, receive and process O(n) messages, where each message can be a
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple
hundred guardian nodes, unless we select a large T value, which is undesirable since it increases the
block finalization latency.

22

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

for randomly chosen pk1 = gsk1 , …, pkn = gskn ∈ G , and random message hashes h1… , hn ∈
G. It can be shown that this is as hard as the Computational Diffie-Hellman (CDH) problem. For the
proof of these two claims, please refer to our multi-level BFT technical report.
Finalization Safety: Safety of the block finalization is easy to prove. Under the 2/3 superma-
jority honesty assumption, If two checkpoint hashes for the same height both get aggregated
signatures from at least 2/3 of all guardians, at least one honest guardian has to sign different
hashes for the same height, which is not possible.

Finalization Liveness: Without network partition, as long as L is large enough, it is highly likely that
after O(log(n)) iteration, all the honest nodes will see an aggregated signature that combines the
signatures of all honest signers. This is similar to how the gossip protocol can robustly spread a
message throughout the network in O(log(n)) time, even with up to 1/3 byzantine nodes. When
there is network partition, consensus for a checkpoint may not be able to reach finalization. How-
ever, after the network partition is over, the guardian pool can proceed to finalize the next
checkpoint block. If consensus can then be reached, all the blocks up to the next checkpoint are
considered finalized. Hence the finalization process will progress eventually.

Messaging Complexity: The aggregated signature gossip protocol runs for L iterations, which is in
the order of O(log(n)). In each iteration, the guardian needs to send message (σi , ci) to all its
neighboring guardians. Depending on the network topology, typically it is reasonable to assume that
for an average node, the number of neighboring nodes is a constant (i.e. the number of neighbors
does not grow as the total number of nodes grows). Hence the number of message a node needs to
send/receive to finalize a checkpoint is in the order of O(log(n)), which is much better than the O(n)
complexity in the naive all-to-all signature broadcasting

implementation. We do acknowledge that each message between two neighboring guardians
contains an n dimensional signer vector ci , where each entry of ci is an integer smaller than
prime p. However, we note that this vector can be represented rather compactly since most of its
entries are small integers (�p) in practice.
To get a more concrete idea of the messaging complexity, let us work out an example. Assume that
we pick a 170-bit long prime number p for the BLS signature, which can provide security compara-
ble to that of a 1024-bit RSA signature. And there are 1000 guardians in total. Under this setting, ci
can be represented with about twenty kilobytes without any compression. Since most of the entries
of ci are far smaller than p, ci can be compressed very effectively to a couple kilobytes long. Plus
the aggregated signature, the size of each message is typically in the kilobytes range. Moreover, if
we assume on average an guardian connects to 20 other guardians, then L can be as small as 5
(more than twice of log20(1000) = 2.3). This means finalizing one checkpoint just requires a
guardian to send/receive around 100 messages to/from its neighbors, each about a couple
kilobytes long. This renders the aggregated signature gossip protocol rather practical to imple-
ment and can easily scale to thousands of guardian nodes. For further analysis, please also refer to
our multi-level BFT technical report.

Interestingly, the immutability characteristic also enhances the tolerance to network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To provide byzantine fault tolerance, an honest node needs to be assured that at least
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This
requires each node to send, receive and process O(n) messages, where each message can be a
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple
hundred guardian nodes, unless we select a large T value, which is undesirable since it increases the
block finalization latency.

23

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

Reward and Penalty for Validators and Guardians

The token reward and penalty structure is essential to encourage nodes to participate in the con-
sensus process, and not to deviate from the protocol.

Both the validators and guardians can obtain a token reward. Each block includes a special Coinbase
transaction that deposits newly minted tokens to the validator and guardian addresses. All
the validators can get a share of tokens for each block. For guardians, rewarding every guardian for
each block might not be practical since their number is large. Instead, we propose the following
algorithm to randomly pick a limited number of guardians as the reward recipient for each block.
Denote the height of the newly proposed block by l, and cp is the most recently finalized checkpoint.
The proposer should have received the aggregated signature σcp and corresponding
signer vector ccp for checkpoint cp. Upon validating (σcp , ccp) , the proposer can check the
following condition for each guardian whose corresponding entry in vector ccp is not zero (i.e. that
guardian signed the checkpoint)

where Bl−1 is the hash of the block with height l − 1 , and H : G × {0 , 1}* → G is the same hash
function used in the BLS signature algorithm. If the inequality holds, the proposer adds the guardian
with public key pki to the Coinbase transaction recipient list. Threshold τ is chosen properly such
that only a small number of guardians are included. The proposer should also attach (σcp , ccp) to
the Coinbase transaction as the proof for the reward.

The SKY ledger also enforces a token penalty should any malicious behavior be detected. In particu-
lar, if a block proposer signs conflicting blocks for the same height, or if a validator votes for differ-
ent blocks of the same height, they should be penalized. Earlier we mentioned that to become either
a validator or a guardian, a node needs to lock up a certain amount of tokens for a period of time.
The penalty will be deducted from their locked tokens. The node that detects the malicious behavior
can submit a special Slash transaction to the blockchain. The proof of

the malicious behavior (e.g. signatures for conflicting blocks) should be attached to the Slash trans-
action. The penalty tokens will be pulled from the malicious node and awarded to the node that
submitted the first Slash transaction.

In the unlikely event that more than one-third of the validators are compromised, the mali-
cious validators can attempt to perform the double spending attack by forking the block-
chain from a block that is settled but not yet finalized. However, this is detectable by the guardian
pool, since forking will generate multiple blocks with the same height, but signed by more than
two-third of the validators. In this case, the validators that conducted the double signing will be
penalized, and the entire validator committee will be re-elected. After the validator committee is
reinstated, the blockchain can continue to advance from the most recent finalized checkpoint.

Interestingly, the immutability characteristic also enhances the tolerance to network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To provide byzantine fault tolerance, an honest node needs to be assured that at least
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This
requires each node to send, receive and process O(n) messages, where each message can be a
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple
hundred guardian nodes, unless we select a large T value, which is undesirable since it increases the
block finalization latency.

24

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

Turing-Complete Smart Contract Support
This SKY Ledger offers a smart contract runtime environment fully compatible with the Ethereum
Virtual Machine18. It provides full-fledged support for Turing-Complete smart contracts. Solidi-
ty-based Ethereum smart contracts can be ported to the SKY Ledger with little effort. Solidity19
has grown a large developer community and the prospect of allowing that proven talent pool to also
contribute to SKY without reinventing the wheel was a prime consideration in enabling compatibility
with the Ethereum Virtual Machine.

Smart contracts enable rich user experiences and new attribution models for video platform DApps
built on the SKY Ledger. For example, video platforms can write smart contracts for loyalty programs
to engage users. Based on users’ activity, or the volume of video segments / data they have relayed,
platform DApps may promote users to a higher tier, which unlocks certain privileges or exclusive
capabilities. As another example, video platforms can issue virtual items backed by the ledger
blockchain (e.g. a virtual rose) for gifting to their favorite content creators. To expand on such a
concept, built on the “non-fungible token” standard, the virtual items could be rare or entirely
unique, such that they are essentially “crypto collectibles”, which can be kept as trophies or
traded for other sought after collectibles, all without additional permissions from 3rd parties.

Moreover, video platforms are able to write smart contracts that enable more fluid pay-
ment-consumption models, such as pay-as-you-go or per-use models. Instead of traditional
annual or monthly subscriptions, user consumption can be priced at a bite-sized granularity, such
that users only need to pay for what they use. This is a feasible way to allow low-priced, short-form
content to be transacted in an economically sensible way, that accrues benefits to both the video
platform and user. SKY Ledger’s properties of tracking micropayments and video segments
enables such smart contracts to be executed.
Smart contracts can also be designed to the benefit of content creators (e.g. user-generated con-
tent producers, larger production studios) as a way to fairly and transparently distribute royalties.
The traditional royalty settlement processes, with all their complexities and obscurities, can be
accommodated with clear smart contract terms that are mutually agreed upon by creators and
distributors - and made available to users that consume the content.

Leveraging smart contracts on the SKY Ledger to enable fully digitized item ownership, innovative
payment-consumption models, and transparent royalty distributions provide an additional layer of
social and economic interactivity that supplements the core functionality of video/content delivery.

As discussed in the introduction section, support for high transaction throughput is a must for a
video streaming focused blockchain. We build the support for off-chain payment directly into the
ledger to facilitate high volumes of transactions.

Off-Chain Micropayment Support

Interestingly, the immutability characteristic also enhances the tolerance to network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To provide byzantine fault tolerance, an honest node needs to be assured that at least
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This
requires each node to send, receive and process O(n) messages, where each message can be a
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple
hundred guardian nodes, unless we select a large T value, which is undesirable since it increases the
block finalization latency.

25

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

Resource Oriented Micropayment Pool

We have designed and implemented an off-chain “Resource Oriented Micropayment Pool” that is
purpose-built for video streaming. It allows a user to create an off-chain micropayment pool that
any other user can withdraw from using off-chain transactions, and is double-spend resistant. It is
much more flexible compared to off-chain payment channels. In particular, for the video streaming
use case, it allows a viewer to pay for video content pulled from multiple caching nodes without
on-chain transactions. By replacing on-chain transactions with off-chain payments, the
built-in “ Resource Oriented Micropayment Pool” significantly improves the scalability of the
blockchain.

The following scenario and diagram provide a comprehensive walkthrough of how the
Resource Oriented Micropayment Pool works in application.

Figure 7. Resource Oriented Micropayment Pool
shows viewer Alice making off-chain transactions
to cachers Bob and Carol for video chunks

Interestingly, the immutability characteristic also enhances the tolerance to network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To provide byzantine fault tolerance, an honest node needs to be assured that at least
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This
requires each node to send, receive and process O(n) messages, where each message can be a
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple
hundred guardian nodes, unless we select a large T value, which is undesirable since it increases the
block finalization latency.

26

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

A couple things to be noted. To create the pool, Alice needs to specify the “ Resource ID”
resourceId that uniquely represents the digital content she intends to retrieve. It may refer to a
video file, or a live stream.
The deposit amount needs to be at least the total value of the resource to be retrieved. For
instance, if the resource is a video file which is worth 10 tokens, then the deposit has to be at
least 10 tokens.

The collateral is required to discourage Alice from double spending. If a double spending
attempt from Alice is detected by the validators of the blockchain, the collateral will be slashed.
Later in the blogpost we will show that if collateral > deposit, the net return of a double spend is
always negative, and hence any rational user will have no incentive to double spend.

The duration is a time-lock similar to that of a standard payment channel. Any withdrawal
from the payment pool has to be before the time-lock expires.
The blockchain returns Alice the Merkle proof of the CreatePool transaction after it has been
committed to the blockchain, as well as createPoolTxHash, the transaction hash of the Create-
Pool transaction.

The targetAddress is the address of the peer that Alice retrieves the resource from, and the
transferAmount is the amount of token payment Alice intends to send. The targetSettle-
mentSequence is to prevent a replay attack. It is similar to the “nonce” parameter in an Ethe-
reum transaction. If a target publishes a ServicePayment transaction to the blockchain (see
the next step), its targetSettlementSequence needs to increment by one.

The recipient peer needs to verify the off-chain transactions and the signatures. Upon validation,
the peer can send Alice the resource specified by the CreatePool transaction.

targetAddress, transferAmount, createPoolTxHash, targetSettlementSequence,
Sign(SKA, targetAddress || transferAmount || createPoolTxHash ||

targetSettlementSequence)

CreatePool(resourceId, deposit, collateral, duration)

 Step 1. Micropayment pool creation: As the first step, Alice publishes an on-chain
transaction to create a micropayment pool with a time-lock and a slashable collateral.

Step 2. Initial handshake between peers: Whenever Alice wants to retrieve the specified
resource from a peer (Bob, Carol, or David, etc.). She sends the Merkle proof of the on-chain
CreatePool transaction to that peer. The recipient peer verifies the Merkle proof to ensure that
the pool has sufficient deposit and collateral for the requested resource, and both parties can
proceed to the next steps.

Step 3. Off-chain micropayments: Alice signs ServicePayment transactions and sends them to
the peers off-chain in exchange for parts of the specified resource (e.g. a piece of the video file,
a live stream segment, etc.). The ServicePayment transaction contains the following data:

Also, we note that the off-chain ServicePayment transactions are sent directly between
two peers. Hence there is no scalability bottleneck for this step.

Interestingly, the immutability characteristic also enhances the tolerance to network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To provide byzantine fault tolerance, an honest node needs to be assured that at least
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This
requires each node to send, receive and process O(n) messages, where each message can be a
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple
hundred guardian nodes, unless we select a large T value, which is undesirable since it increases the
block finalization latency.

27

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

The targetAddress is the address of the peer that Alice retrieves the resource from, and the
transferAmount is the amount of token payment Alice intends to send. The targetSettle-
mentSequence is to prevent a replay attack. It is similar to the “nonce” parameter in an Ethe-
reum transaction. If a target publishes a ServicePayment transaction to the blockchain (see
the next step), its targetSettlementSequence needs to increment by one.

The recipient peer needs to verify the off-chain transactions and the signatures. Upon validation,
the peer can send Alice the resource specified by the CreatePool transaction.

Step 4. On-chain settlement: Any peer (i.e. Bob, Carol, or David, etc) that received the
ServicePayment transactions from Alice can publish the signed transactions to the blockchain
anytime before the timelock expires to withdraw the tokens. We call the ServicePayment
transactions that are published the “on-chain settlement” transactions.

Note that the recipient peers needs to pay for the gas fee for the on-chain settlement
transaction. To pay less transaction fees, they would have the incentive to publish on-chain
settlements only when necessary, which is beneficial to the scalability of the network.

Also, we note that the off-chain ServicePayment transactions are sent directly between
two peers. Hence there is no scalability bottleneck for this step.

We note that no on-chain transaction is needed when Alice switches from one peer to another to
retrieve the resource. In the video streaming context, this means the viewer can switch to any cach-
ing node at any time without making an on-chain transaction that could potentially block or delay
the video stream delivery. As shown in the figure, in the event that Bob leaves, Alice can switch to
Carol after receiving k chunks from Bob, and keep receiving video segments without an on-chain
transaction.
Moreover, the total amount of tokens needed to create the micropayment pool is (collateral +
deposit), which can be as low as twice of the value of the requested resource, no matter how many
peers Alice retrieves the resource from. Using computational complexity language, the amount of
reserved token reduces from O(n) to O(1) compared to the unidirectional payment channel
approach, where n is the number of peers Alice retrieves the resource from.

To prevent Alice, the creator of the micropayment pool from double spending, we need to 1) be able
to detect double spending, and 2) ensure that the net value Alice gains from double spending is
strictly negative.

Detecting double spending is relatively straightforward. The validators of the SKY Network check
every on-chain transaction. If a remaining deposit in the micropayment pool cannot cover the next
consolidated payment transaction signed by both Alice and another peer, the validators will consider
that Alice has conducted a double spend.

Next, we need to make Alice worse off if she double spends. This is where the collateral comes in.
Earlier, we mentioned that the amount of collateral tokens has to be larger than the deposit. And
here is why.

In Figure 8 below, Bob, Carol, and David are honest. Alice is malicious. Even worse, she colludes with
another malicious peer Edward. Alice exchanges partially signed transactions with Bob, Carol, and
David for the specified resource. Since Alice gains no extra value for the duplicated resource, the
maximum value she gets from Bob, Carol, and David is at most the deposit amount. As Alice

Double Spending Detection and Penalty Analysis

colludes with Edward, she can send Edward the full deposit amount. She then asks Edward to
commit the settlement transaction before anyone else and return her the deposit later. In other
words, Alice gets the resource which is worth at most the deposit amount for free, before the double
spending is detected. Later when Bob, Carol, or David commit the settlement transaction, the
double spending is detected, and the full collateral amount will be slashed. Hence, the net return for
Alice is

Interestingly, the immutability characteristic also enhances the tolerance to network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To provide byzantine fault tolerance, an honest node needs to be assured that at least
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This
requires each node to send, receive and process O(n) messages, where each message can be a
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple
hundred guardian nodes, unless we select a large T value, which is undesirable since it increases the
block finalization latency.

28

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

colludes with Edward, she can send Edward the full deposit amount. She then asks Edward to
commit the settlement transaction before anyone else and return her the deposit later. In other
words, Alice gets the resource which is worth at most the deposit amount for free, before the double
spending is detected. Later when Bob, Carol, or David commit the settlement transaction, the
double spending is detected, and the full collateral amount will be slashed. Hence, the net return for
Alice is

Therefore, we can conclude that for this scenario, as long
as collateral > deposit, Alice’s net return is negative.
Hence, if Alice is rational, she would not have any incen-
tive to double spend.

We can conduct similar analysis for other cases. The
details are omitted here, but it can be shown that in all
cases Alice’s net return is always negative if she conducts
a double spend.

Another case is that Alice is honest, but some of her
peers are malicious. After Alice sends a micropayment to
one of those peers, it might not return Alice the resource
she wants. In this case, Alice can turn to another peer to
get the resource. Since each incremental micropayment
can be infinitesimally small in theory, Alice’s loss can be
made arbitrarily small.

Figure 8. Malicious Actor Detection and Penalty shows
malicious actor Alice attempting to
make a double spend and the resulting penalty she
receives

The above example also illustrates one advantage of our implementation compared to other PBFT
based protocols like Tendermint — a block that does not receive a commit-certificate can also be
included in the settled chain, as long as one of its successor blocks is settled. For instance, block
X101 in the example did not get a commit-certificate, but after block X102 is settled, it is also
considered settled. This reduces the waste of computation power and helps increase the transaction
throughput.

Interestingly, the immutability characteristic also enhances the tolerance to network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To provide byzantine fault tolerance, an honest node needs to be assured that at least
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This
requires each node to send, receive and process O(n) messages, where each message can be a
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple
hundred guardian nodes, unless we select a large T value, which is undesirable since it increases the
block finalization latency.

29

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

Using a public ledger to facilitate the micropayments for streaming is challenging, not only because
of high transaction throughput, but also for storage space management. To achieve the
“pay-per-byte” granularity, each viewer could send out a payment every few seconds. With even a
moderate ten thousand concurrent users, it could generate a couple thousands of transactions per
second. Even with the off-chain payment pool which already reduces the amount of on-chain
transactions dramatically, the block and state data could still balloon rather quickly.

We have designed a storage system that addresses this problem, and can adapt to different types of
machines, be it a powerful server cluster running in data centers, or a commodity desktop PC.

To harness the processing and storage power of server clusters, the key design decision is to adopt
the popular microservice architecture commonly seen for modern web service backends, where
different modules of the ledger can be configured to run on different machines. In particular, the
consensus module and the storage module can be separated. Potentially the consensus module can
run on multiple machines using the MapReduce framework to process transactions in parallel.

The SKY Ledger stores both the transaction blocks and the account state history, similar to Ethere-
um. The bottom layer of the storage module is a key value store. The SKY Ledger implements the
interfaces for multiple databases, ranging from single machine LevelDB to cloud based NoSQL
database such as MongoDB, which can store virtually unlimited amount of data. Thus the ledger can
run on one single computer, and can also be configured to run on server clusters.

Ledger Storage System

Storage Microservice Architecture

While the microservice architecture suits
the powerful server clusters well, we still
face storage space constraints when run-
ning the ledger on a lower-end home PC.
We have designed several techniques to
reduce the storage consumption.

Similar to Ethereum, the SKY Ledger stores
the entire state for each block, and the state
tree root is saved in the header of the corre-
sponding block. To reduce the space con-
sumed by the state history, the SKY Ledger
implements state history pruning, which
leverages a technique called reference count-
ing illustrated in the figure below.

History Pruning

Figure 9. State history pruning with reference counting

Interestingly, the immutability characteristic also enhances the tolerance to network asyn-
chrony or even partition. With network partition, the guardians may not be able to reach consensus
on the hash of a checkpoint. However, after the network is recovered, they can move on to vote on
the next checkpoint. If they can then reach agreement, then all the blocks up to the next checkpoint
are finalized, regardless of whether or not they have consensus on the current checkpoint.

To provide byzantine fault tolerance, an honest node needs to be assured that at least
two-thirds of the guardians have the same checkpoint block hash. Hence it needs to receive

signatures for a checkpoint hash from at least two-third of all guardians before the node can mark
the checkpoint as finalized. This is to ensure safety, which is similar to the “commit” step in the
celebrated PBFT protocol.

Since the guardians only need to vote on checkpoint hashes every T blocks, they have more time to
reach consensus. A straightforward implementation of checkpoint finalization is thus to follow the
PBFT “commit” step where each guardian broadcasts its signature to all other guardians. This
requires each node to send, receive and process O(n) messages, where each message can be a
couple kilobytes long. Even with T blocks time, this approach still cannot scale beyond a couple
hundred guardian nodes, unless we select a large T value, which is undesirable since it increases the
block finalization latency.

30

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

The ledger state (i.e. the token balance of each account, etc.) is stored using a Merkle-Patricia trie.
Figure 9(a) depicts the initial state tree, whose root is denoted by State 0. Each node in the tree has
an attribute called the “reference count”, which is equal to the number of parents of the node. In the
initial state tree, each node has only one parent, so the reference count are all set to 1.
In Figure 9(b), account A is updated to A* after applying the transactions in the newly settled block.
Hence a new Merkle state root State 1 is created, along with the Merkle branch connecting
the new root State 1 and A* (the blue nodes and edges). Since new nodes are added, we update
the reference count of direct children of these new nodes from 1 to 2.
At some point we decided to delete State 0 to save some storage space. This is done by deleting
the nodes whose reference count is zero recursively starting from the root State 0, until no node can
be deleted. Whenever a node is deleted, the reference count of all its children will be decremented
by one. Figure 9(c) illustrates the process, and Figure 9(d) shows the result of the pruning. To
achieve the maximum level to state storage compaction, once a block is finalized by the guardian
pool, we can delete all the history prior to that block. The ledger can also be configured to keep a
limited history of states, for example, the state trees of the latest 1000 blocks, depending on the
available storage space.

It can be shown that with the reference counting technique, pruning a state tree has the time com-
plexity of O(k log N), where k is the number of accounts updated by the transactions in one block,
and N is the total number of accounts. Typically, k is in the range of a couple hundreds to a thou-
sand. Hence, pruning a state tree should be pretty efficient and should not take much time.

Managing the space consumed by the transaction blocks is even simpler, after a block is finalized,
we can simply delete all its previous blocks, or keep a limited history similar to the state trees.

With these techniques, common PCs and laptops are sufficient to run the guardian nodes.

One of the pain points using earlier generation blockchains is the state synchronization time. After
spinning up a new node, typically it needs to download the full block history all the way from the
genesis block. This could take days to complete, and already becomes a hurdle for user adoption.
The state and block history stored by the full nodes can help reduce the synchronization time
dramatically. After a new node start, the first step is to download all the validator and guardian
join/leave transactions and the headers of the blocks that contain these special transaction up to
the latest finalized block. With these special transactions and the headers which contain the valida-
tor and guardian signatures, the new node can derive the current validator committee and guardian
pool. Since the validator and guardian set changes are relatively infrequent, the amount of data
need to be downloaded and verified for this step should be minimal.
In the second step, the new node downloads the state tree corresponding to the latest final-
ized block. And it needs to confirm that the root hash of the tree equals the state hash stored in the
latest finalized block. Finally, the new node verifies the integrity of the state tree (e.g. the validity of
the Merkle branches). If all the checks are passed, the new node can start listening to new blocks
and start participating in the consensus process.

State Synchronization

31

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

A Dual Currency System and Token Mechanics
In the interest of securing the network, installing proper governance, and managing the usage of
the network, the SKY blockchain will use a dual currency system. The SKY token will be used to
stake, secure, and govern the SKY Network, while individual operations (video segment trans-
actions, smart contract operations, etc.) will be paid for with the operational token, Gamma.

There are two key reasons to introduce a second token:

First, this allows the utility and purpose of each token to be separated. SKY is used strictly for stak-
ing and securing the network, while Gamma is used to power utility-based operations of the net-
work. This is necessary because staking inherently decreases circulating supply, but video segment
transactions and smart contracts will require a highly-liquid token that can facilitate millions of daily
transactions.

Second, two tokens are needed to solve possible consensus issues that arise from using the same
token for staking and operations. Because the token used for operations must be liquid, it would be
easier for a malicious actor to accumulate a significant number of that frequently-traded
token on the open market. If that same token is also used for staking, they could potentially threat-
en the security of the SKY Network. By separating the two functions (staking and operations) into
different tokens, that risk is greatly decreased.

As an ERC20 token, the SKY token supply is currently fixed at 1 billion. At Mainnet launch, each
holder of the ERC20 SKY token will receive native SKY tokens on the new blockchain on a 1�1 basis.
The supply of native SKY on the new blockchain will also be permanently fixed at 1 billion, meaning
no new SKY tokens will ever be created.
The primary reason for fixing the SKY token supply is to make it prohibitively expensive for a mali-
cious actor to acquire enough tokens to threaten the network. Since new SKY tokens will never be
created, the only way to acquire more is by purchasing existing tokens and over time making it more
expensive to amass a controlling amount of SKY tokens.

SKY Token Supply and Mechanics

Gamma is the operational token of the SKY blockchain, used as the “gas” to pay for video segment
microtransactions and smart contract operations. The Gamma token is also built on the SKY block-
chain and 5,000,000,000 Gamma will be generated at the time of Mainnet launch. This initial supply
of Gamma will be distributed to all SKY token holders at the point of token swap, seeding the
network with enough Gamma for the network to function effectively.

At the time of the token swap, each SKY token holder will also receive 5 Gamma tokens for each SKY
token they hold. Initially, there will be no increase in the number of Gamma tokens until the
multi-level BFT consensus mechanism is launched and the guardian pool is formed. After that point,

Gamma Token Supply and Mechanics

validators and guardian nodes will each be required to stake SKY tokens to perform their respec-
tive functions. Both validators and guardians will earn Gamma proportionally according to
the number of SKY tokens they have staked, with total rewards equal to a target increase in the
supply of Gamma. The target increase in supply of Gamma will initially be set at 5% annually. This
rate may be adjusted dynamically in response to demand for Gamma from video platforms. In other
words, the supply of Gamma will increase by 5% over the year, and if you run a guardian node and
stake SKY tokens, your share of those new Gamma tokens will equal your share of staked SKY
tokens as a percentage of the total staked SKY tokens.

To help maintain the appropriate amount of Gamma in circulation, all Gamma used as gas to deploy
or interact with smart contracts will be burned (permanently destroyed). By having both Gamma
generation and destruction tied to network usage/adoption, the number of Gamma tokens will
maintain a healthy equilibrium relative to demand.

32

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

Gamma is the operational token of the SKY blockchain, used as the “gas” to pay for video segment
microtransactions and smart contract operations. The Gamma token is also built on the SKY block-
chain and 5,000,000,000 Gamma will be generated at the time of Mainnet launch. This initial supply
of Gamma will be distributed to all SKY token holders at the point of token swap, seeding the
network with enough Gamma for the network to function effectively.

At the time of the token swap, each SKY token holder will also receive 5 Gamma tokens for each SKY
token they hold. Initially, there will be no increase in the number of Gamma tokens until the
multi-level BFT consensus mechanism is launched and the guardian pool is formed. After that point,

validators and guardian nodes will each be required to stake SKY tokens to perform their respec-
tive functions. Both validators and guardians will earn Gamma proportionally according to
the number of SKY tokens they have staked, with total rewards equal to a target increase in the
supply of Gamma. The target increase in supply of Gamma will initially be set at 5% annually. This
rate may be adjusted dynamically in response to demand for Gamma from video platforms. In other
words, the supply of Gamma will increase by 5% over the year, and if you run a guardian node and
stake SKY tokens, your share of those new Gamma tokens will equal your share of staked SKY
tokens as a percentage of the total staked SKY tokens.

To help maintain the appropriate amount of Gamma in circulation, all Gamma used as gas to deploy
or interact with smart contracts will be burned (permanently destroyed). By having both Gamma
generation and destruction tied to network usage/adoption, the number of Gamma tokens will
maintain a healthy equilibrium relative to demand.

The validator set will initially be made up of nodes operated by SKY Labs, to be followed by addi-
tional validator nodes operated by key strategic partners. Eventually, guardian nodes that perform
to a high-standard (node availability, hardware and bandwidth requirements, etc.) and stake a
sufficient number of SKY tokens may be eligible to participate as a validator node on a rotating
basis. Our end goal is for a validator set comprised of SKY Labs, video platform partners, and
community members where no single entity or group has enough control of the network to act
maliciously. If any validator(s) were to act maliciously, the guardian pool should be sufficiently diver-
sified that it would act as a second line of defense to prevent malicious acts and remove malicious
validators. Malicious actors that take actions to harm the network will also have their staked SKY
slashed (forfeited).

We expect guardian node functionality to launch in a major upgrade following Mainnet launch. A
standalone client will be released allowing users to operate a guardian node and stake their

SKY tokens. As currently constructed the protocol can support up to 1,000 guardian nodes without
sacrificing transaction throughput. To achieve the optimal set of guardian nodes, we expect to set a
range of approximately 100,000 - 1,000,000 SKY tokens permitted to be staked per guardian
node. These figures may be adjusted based on further testing and community feedback
between now and Mainnet launch.

Validator and Guardian Nodes

33

Future Work

In this whitepaper, we introduced the SKY protocol, a new blockchain and token as the incentive
mechanism for a decentralized video streaming network. The SKY Network encourages view-
ers to share their computing and bandwidth resources and solves a number of technical and busi-
ness challenges.

There are many other technical aspects of the protocol and network which we classify as future
work, beyond the initial launch of the native SKY Network:

● Anti-Piracy. The network can be expanded to include anti-piracy - since tokens may be used to
stream and cache certain content, the tokens serve as a “disincentive” within the network as the
content can be tagged as required tokens or “premium content”

● General Purpose Service Platform. The SKY protocol is in fact independent of streaming. It
can be extended to handle other types of service (e.g. share computing resources) to allow end
users to receive service for free.

● Sidechain/Plasma for “Infinite Transaction Throughput” . With the support for Turing-Com-
plete smart contracts, the SKY blockchain, it is possible to build layer-2 constructs like side-
chain, state channel20, Plasma21 on top of the SKY blockchain to achieve unlimited transaction
throughput.

34

Founding
& Advisory Team

The founding members of the SKY Network include:

Mr. Liu is the co-founder and CEO of SLIVER.tv, the leading esports entertainment platform with
patented technology to live stream top esports events in fully immersive 360 ° VR in partnership with
Intel Extreme Masters, Turner ELEAGUE, ESL One and Dreamhack among other global tournament
operators. Along with his co-founder Mr. Long, they currently hold two patents and two additional
pending patents for virtual reality 360 ° video streaming, and new algorithms for generating highly
efficient live spherical video streams.
In 2010, Mr. Liu co-founded Gameview Studios best known for its Tap Fish mobile game
franchise with nearly 100 Million downloads. The company was acquired by DeNA, a leading Japa-
nese mobile gaming company within 6 months of launch. Prior to that, he co-founded Tapjoy in
2007, a pioneer of rewarded social and mobile video advertising, and grew that company to
$100MM in revenues. He received a BS in Computer Science & Engineering from MIT, completed his
thesis research at MIT Media Lab “ Interactive Cinema” video group and received a MBA from
Stanford Graduate School of Business.

Mitch Liu

Mr. Long is the co-founder and Chief Technology Officer of SLIVER.tv. He leads the technical team
and developed multiple patented technologies including VR live streaming and instant replay for
video games. He received a B.S. degree in Microelectronics from Peking University in Beijing,
China. He also received a Ph.D. degree in Computer Engineering from Northwestern University
in Evanston, IL where he conducted research in mathematical modeling and algorithms to optimize
large scale electronics systems, and a cryptography enthusiast.

Jieyi Long

35

A Decentralized Video Delivery and Streaming Network
Powered by a New Blockchain

The advisory team to SKY includes:

Mr. Nichols is the Head of Product and Platform for SLIVER.tv. He leads the company’s eSports
entertainment platform built around one of the largest esports virtual economies with 1B+
virtual tokens circulated within two months of launch. Leading previous startups, he’s designed
and launched virtual currency systems for a variety of multiplayer games, including a
cross-game virtual currency API used by hundreds of third-party game developers and tens of
millions of players worldwide. Mr. Nichols was a director for Tencent on the globally popular WeChat
app, and a co-founder of a live video streaming app for foodies.

Ryan Nichols

Mr. Virk is an advisor, investor and the interim Head of Corporate Development at SLIVER.tv. Mr. Virk
also serves as the current director of Play Labs @ MIT, and did his research at the MIT Media Lab. Mr.
Virk is an early investor in cryptocurrency and blockchain companies, including Ripio/BitPagos,
CoinMkt, Bex.io, and has been active with BitAngels since 2013. Mr. Virk is the co-author of several
cryptocurrency related papers including Online Automatic Auctions for Bitcoin Over-The-Counter
Trading (2015) and Creating a Peer to Peer System for Buying and Selling Bitcoin Online (2013) and
was the designer of Bitcoin Bazaar, one of the first peer-to-peer mobile applications for in-person
trading of bitcoin. Mr. Virk received his BS in Computer Science & Engineering from MIT and his
Master’s in Management from Stanford Graduate School of Business.

Rizwan Virk

